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Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of
the network, which is called the spectral gap. Examples include the threshold coupling strength for synchro-
nization and the relaxation time of a random walk. A large spectral gap is usually associated with high network
performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the
spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of
nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we
develop a perturbative method to achieve this goal. The proposed method realizes better performance than
other heuristic methods on various model and real networks. The spectral gap increases as we remove up to
half the nodes in most of these networks.

DOI: 10.1103/PhysRevE.82.046102 PACS number�s�: 89.75.Fb, 64.60.aq, 05.45.Xt

I. INTRODUCTION

Various systems of interacting elements can be repre-
sented by networks that consist of a set of nodes and links
that connect pairs of nodes. The structure of networks affects
various dynamics occurring on the networks �1–3�. In par-
ticular, many dynamics on networks are controlled by a few
extremal eigenvalues of the adjacency matrix and the Laplac-
ian matrix of the network �see Sec. II for the definition of the
Laplacian matrix�. The values of these eigenvalues provide
concise and useful information about the dynamics on the
networks.

In this study, we focus on the second smallest eigenvalue
of the Laplacian matrix; it is called the spectral gap and is
denoted by �2 in this paper. We examine �2 because it char-
acterizes a wide class of dynamics on networks as follows.
First, a network with a large value of �2 decreases the thresh-
old of coupling strength for synchronization for both linear
dynamics and some nonlinear dynamics including coupled
oscillators on networks �1–6,8�. Such a family of nonlinear
dynamics is called the class II �2,9� or type II �4� dynamics.
Note that the largest Laplacian eigenvalue as well as �2 is an
important determinant of the synchronizability in the so-
called class III �2,9� or type I �4� dynamics. However, we are
not concerned with class III or type I dynamics in this paper.
Second, when �2 is large, synchronization in these dynamics
�5� and consensus dynamics �10� occur rapidly in certain
types of networks. Third, �2 characterizes the convergence
speed of the Markov chain on the network to the stationary
density �8,11�. Fourth, the first-passage time of the random
walk is characterized by �2 �8�. Fifth, the duality between the
coalescing random walk and the voter model �12� implies
that �2 also determines the consensus time of the stochastic
voter dynamics. This is in agreement with the results ob-
tained for the majority-vote spin dynamics on networks �5�.
In addition to these dynamical properties of networks, vari-

ous graph-theoretical structural properties of networks are
characterized by �2 �11,13�.

In these applications, a large value of �2 is usually pre-
ferred because it indicates, for example, enhanced synchro-
nizability and fast convergence. Consequently, the enhance-
ment of �2 has been explored in the framework of designing
of networks �6,7� and numerical optimization via the rewir-
ing of links �8,14�. In practice, however, rewiring links, con-
structing optimized networks from scratch, and adding nodes
or links are likely to cost more than the removal of nodes or
links of a given network. The effects of removal of nodes or
links have been investigated in the context of the cascading
failure �15� and the influence on extreme eigenvalues of the
adjacency matrix �16�. With regard to Laplacian eigenvalues,
the removal of links always decreases �2 and makes the net-
work less likely to synchronize �17,18�. However, to the best
of our knowledge, whether or not careful removal of nodes
may increase �2 has not yet been examined. We treat this
problem in the present paper.

Although removal of nodes generally decreases the mag-
nitude of activities, stabilizing synchronization at the ex-
pense of the magnitude is valuable in some applications. The
treatment of cardiac arrhythmia is one of the examples. The
heart consists of a large number of cardiac cells that show
nonlinear dynamics �19�. Synchronized dynamics of cardiac
cells create physiological heart beats �20�. Cardiac arrhyth-
mia is considered to be caused by malfunction of synchroni-
zation. The catheter ablation aims at restoring synchrony of
the entire heart by electrically deactivating some cardiac
cells that prevent synchronization �21�. As another example,
proper operations of power plant networks also critically re-
quire that the frequency of voltage among power plants is
synchronized �22,23�. Loss of the synchronization may in-
duce a blackout in the entire network. Therefore, it is likely
that stable synchrony at the expense of some total power
supply serves steady supplying of electricity to the entire
network �22�.

We compare various strategies for maximizing �2 by se-
quential node removal on various model and real networks.
In particular, we develop a perturbative strategy that is ap-*masuda@mist.i.u-tokyo.ac.jp
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plicable to relatively large networks in terms of the compu-
tational cost. We show that the performance of the perturba-
tive strategy is comparable to that of the computationally
costly optimal sequential strategy and is generally better than
that of heuristic strategies. In addition, in many examined
examples, �2 continues to increase until we remove a fairly
large fraction of nodes ��50%� sequentially according to the
perturbative strategy.

II. STRATEGIES FOR SEQUENTIAL NODE REMOVAL

We consider undirected and unweighted connected net-
works with N nodes. The Laplacian matrix L is defined as
follows: Lij �1� i� j�N� is equal to −1 if node i and j are
connected and 0 otherwise; L is a symmetric matrix. The
diagonal is given by Lii=ki, where ki is the degree of node i.
Note that � j=1

N Lij =0 for each i. L has N �real� non-negative
eigenvalues 0=�1��2� ¯ ��N. We seek to maximize �2
upon sequential removal of nodes. We compare the effective-
ness of the following node removal strategies by applying
them to model and real networks.

�a� Degree-based strategy. In each step, we remove the
node with the smallest degree in the remaining network. The
rationale behind this strategy is that the smallest degree con-
trols �2, with a useful bound being �2�kminN / �N−1�, where
kmin is the smallest degree in the network �4,11,13�. If there
exist multiple nodes having the same smallest degree, we
select one of them with an equal probability.

In intentional attacks on networks, where the aim is to
fragment the network into disjoint components with a small
number of removed nodes, removing nodes with the largest
degree is an effective strategy �24�. We implemented this
strategy but obtained poor results for our purpose, and there-
fore we do not mention it in the following.

�b� Betweenness-based strategy. In each step, we remove
the node with the smallest betweenness centrality. The be-
tweenness centrality of node i is defined as follows: Denote
by �i1i2

the number of the shortest paths between nodes
i1 and i2 and by �i1i2

�i� the number of the shortest paths
between them that pass through node i. We set �i1i2

�i1�
=�i1i2

�i2�=0. The betweenness centrality of node i is propor-
tional to �i1=1;i1�i

N �i2=i1+1;i2�i
N �i1i2

�i� /�i1i2
�2,3,25�. Sequen-

tially removing nodes with the largest betweenness centrality
yielded poor results, and therefore we do not mention it in
the following.

�c� Optimal sequential strategy. We calculate the change
in �2 induced by the removal of each node by direct numeri-
cal simulations. Then, we select the node whose removal
increases �2 by the largest amount. Note that this strategy is
computationally costly because it requires the calculation of
�2 for N different networks, each having N−1 nodes. Calcu-
lating �2 for a single network requires O�N3� time. There-
fore, carrying out a single step of the optimal sequential
strategy requires O�N4� time.

�d� Perturbative strategy. To avoid the computational cost
of the optimal sequential strategy, we develop an approxi-
mate perturbative strategy defined as follows: Related pertur-
bative calculations are treated in �16,17,26�.

Let us represent the eigenequation for �2 as Lu=�2u,
where u is the N-dimensional eigenvector of L correspond-
ing to �2. The eigenvector u is normalized such that
�i=1

N ui
2=1, where ui is the ith element of u. The eigenequa-

tion after the removal of node i is given by

�L + �L��u + �u� = ��2 + ��2��u + �u� , �1�

where the changes in L, �2, and u induced by the removal of
node i are denoted by �L, ��2, and �u, respectively. Be-
cause L is symmetric, the displacement matrix �L is given
by ��L�ii=−Lii=−ki, ��L� j j =Lji �j� i�, and ��L� ji= ��L�ij
=−Lji �j� i�. Because the ith component of u+�u is equal to
zero, we write �u=�u−uiêi, where êi is the unit vector for
the ith component and �u is an N-dimensional vector. By
multiplying the normalized left eigenvalue u� �� denotes
the transpose� from the left-hand side of Eq. �1�, we obtain

��2 =
u��L�u − uiêi + �u�

u��u − uiêi + �u�
. �2�

We assume that the absolute value of each element of �u is
smaller than that of u−uiêi. Then, by ignoring �u in Eq. �2�
and substituting the expression for �L in Eq. �2�, we obtain

��2 �
�

j�Ni

uj�ui − uj�

1 − ui
2 , �3�

where Ni indicates the neighborhood of node i.
In the perturbative strategy, we remove node i that maxi-

mizes ��2 given in Eq. �3�. Note that carrying out one step
of the perturbative strategy requires solving the eigenequa-
tion just once. Therefore, the computation cost is O�N3�,
which is N times smaller than that for the optimal sequential
strategy. In the following numerical simulations, the net-
works are connected during sequential node removal for all
the networks and strategies.

III. RESULTS

In this section, we apply the node-removal strategies in-
troduced in Sec. II to various model and real networks.

A. Model networks

First, we apply different strategies to the following types
of model networks:

�a� Erdős-Rényi �ER� random graph with mean degree
�k�= p�N−1�, where p is the probability that a link exists
between a pair of nodes.

�b� Watts-Strogatz �WS� model �27�, where each node is
connected to �k� /2 closest nodes on each side along the ring
and a fraction, 0.3, of links are rewired randomly.

�c� Barabási-Albert �BA� model �28�, a representative
growing scale-free network model. We start the growth of
the network from the complete graph of m nodes and add a
node with m links one by one according to the preferential
attachment. We obtain �k��2m, degree distribution p�k�
�k−3, and low clustering.

TAKAMITSU WATANABE AND NAOKI MASUDA PHYSICAL REVIEW E 82, 046102 �2010�

046102-2



�d� Holme-Kim �HK� model �29�, a growing scale-free
network model. The algorithm of the HK model is similar to
that of the BA model. The difference is that when a node is
added, the preferential attachment is used with a certain
probability, which we set as 0.5. With the remaining prob-
ability �i.e., 0.5�, we use the so-called triad formulation rule
to enhance clustering. We obtain �k��2m, degree distribu-
tion p�k��k−3, and high clustering.

�e� Goh model �30�, a nongrowing scale-free network
model. We assign the weight wi= i−0.5 to each node i. Then,
we select a pair of nodes with the probability proportional to
wi and connect them. We repeat this procedure until we ob-
tain the desired mean degree �k�. We obtain p�k��k−3.

For each network model, we assume two values of �k�.
For each case, we carry out sequential node removal accord-
ing to different strategies. Because, in stepwise node re-
moval, the optimal sequential strategy is usually an efficient
way, we will mainly evaluate the effectiveness of the other
strategies using the performance of the optimal sequential
strategy as a baseline.

The numerical results obtained for the networks with N
=250 averaged over ten trials are shown in Fig. 1. Figures
1�a��1� and 1�a��2� show the values of �2 after removing a
fraction of nodes for two ER random graphs with different

values of �k�. The fraction of the removed nodes is denoted
by f . For each strategy, �2 increases slightly in the early
stages �i.e., 0� f �0.05�. Then, �2 starts to decrease even for
the optimal sequential and perturbative strategies, which are
designed to maximize �2. Surprisingly, in the network with
larger �k� �Fig. 1�a��2��, the optimal sequential strategy is not
as efficient as the other strategies as f increases. This is pos-
sible because the optimal sequential strategy finds the step-
wise best strategy and does not take into account the perfor-
mance after multiple nodes are removed. The perturbative
strategy remains more efficient or as efficient as the optimal
sequential strategy when f is large.

For the WS model with different mean degrees �Figs.
1�b��1� and 1�b��2�� , the optimal sequential and perturbative
strategies outperform the heuristic degree-based and
betweenness-based strategies. As in the case of the ER ran-
dom graph, the perturbative strategy is as efficient as the
optimal sequential strategy.

The performances of the perturbative strategies are also
good among the competitive strategies for different scale-
free network models �Figs. 1�c��1�, 1�c��2�, 1�d��1�, and
1�d��2��. In the Goh model �Figs. 1�e��1� and 1�e��2�� though
it is not better than the degree-based strategy, the perturba-
tive strategy is better than the optimal sequential strategy
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FIG. 1. Numerical results for model networks
with N=250 nodes. We set �k�=10 and �k�=40
for each network. �a� ER random graph, �b� WS
model, �c� BA model, �d� HK model, and �e� Goh
model. �a��1�, �a��2�, �b��1�, �b��2�, �c��1�, �c��2�,
�d��1�, �d��2�, �e��1�, and �e��2� show the change
in �2 induced by each strategy. The mean degrees
are shown in the panels. �a��3�, �b��3�, �c��3�,
�d��3�, and �e��3� show the change in the mean
degree with node removal. �a��4�, �b��4�, �c��4�,
�d��4�, and �e��4� show the change in the standard
deviation of the degree with node removal.
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except for in the early stage �i.e., 0� f �0.3� in the Goh
model with the smaller degree �Fig. 1�e��1��. Note that for
the three scale-free network models, �2 continues to increase
even until half the nodes are removed.

Changes in �k� and the standard deviation of the degree
with node removal according to the perturbative strategy are
shown in Figs. 1�a��3�, 1�a��4�, 1�b��3�, 1�b��4�, 1�c��3�,
1�c��4�, 1�d��3�, 1�d��4�, 1�e��3�, and 1�e��4�. The direction
of changes in �k� and that of the standard deviation of the
degree depend on the network model. For example, in the
Goh model, nodes with small degree are preferentially re-
moved in general, especially for small f �Fig. 1�e��3��. How-
ever, the removed nodes are not generally those with the
smallest degrees; the degree-based strategy performs rela-
tively poorly �Figs. 1�b��1�, 1�b��2�, 1�c��1�, 1�c��2�, 1�d��1�,
1�d��2�, 1�e��1�, and 1�e��2��. In contrast, in the ER, WS, BA,
and HK models, the perturbative strategy removes nodes
with appropriately large degree �Figs. 1�a��3�, 1�b��3�,
1�c��3�, and 1�d��3��. Similarly, the perturbative strategy in-
creases �2 by increasing the heterogeneity of degree in the
WS model �Fig. 1�b��4�� and by decreasing the same hetero-
geneity in the other four network models �Figs. 1�a��4�,
1�c��4�, 1�d��4�, and 1�e��4��. These show that the perturba-
tive strategy adapts itself for each network.

Next, we compare the efficiency of different strategies on
larger networks �N=2000�. We exclude the optimal sequen-

tial strategy because the large N hinders its implementation.
In this set of numerical simulations, we are mainly con-
cerned with the performance of the perturbative strategy. The
numerical results obtained on the basis of five realizations of
each network are shown in Fig. 2. These results are qualita-
tively the same as those obtained for the smaller networks
shown in Fig. 1. The perturbative strategy enhances �2 more
efficiently than the other heuristic strategies except in ER
models. In addition, the behavior of the perturbative strategy
cannot be simply captured by the changes in �k� or the stan-
dard deviation of the degree, which is again qualitatively the
same as the results shown in Fig. 1.

B. Real networks

We apply the proposed strategies to the largest connected
component of the following real networks: the C. elegans
neural network �31,32�, E. coli metabolic network �33�, elec-
tronic mail social network �34�, and macaque cortical net-
work �35�. We ignore the direction of links in the C. elegans
neural network and the macaque cortical network, both of
which are originally directed networks. In the C. elegans
neural network, two neurons are regarded to be connected
when they are connected by at least one chemical synapse or
gap junction.
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FIG. 2. Numerical results for �a� ER model,
�b� WS model, �c� BA model, �d� HK model, and
�e� Goh model with N=2000. We set �k�=10 and
�k�=40 for each network model with one excep-
tion. We use �k�=15 instead of �k�=10 for the
Goh model because the Goh model with N
=2000, �k�=10, and wi= i−0.5 �1� i�N� rarely
yields a connected network.
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The efficiency of different strategies on these real net-
works is shown in Fig. 3. The perturbative strategy enhances
�2 more efficiently in all the tested real networks than the
degree-based and betweenness-based strategies. Except in
the case of the E. coli metabolic network, which is too large
for the optimal sequential strategy, the results for the optimal
sequential strategy are shown as well �Figs. 3�a�, 3�c�, and
3�d��. The perturbative strategy performs roughly as well as
the optimal sequential strategy in these networks.

C. Comparison to the rewiring strategy

One can alternatively enhance �2 by rewiring links �8,14�.
In the rewiring strategy, we sequentially rewire links to in-
crease �2. In each step, we examine the increase in �2 for all
the possible patterns of single-link rewiring and adopt the
one that increases �2 by the largest amount. To compare the
performance of the node removal and the rewiring, we carry
out numerical simulations using the ER and BA models with
N=50 and �k�=4. We simulate the rewiring process just once
for each network because the rewiring strategy is computa-
tionally costly.

The change in �2 relative to the initial value during the
rewiring process is shown in Fig. 4�a�. �2 is enhanced up to
about 1.7-fold for both networks. The corresponding results
for the sequential node removal according to the perturbative
strategy are shown in Fig. 4�b�. Roughly speaking, the per-
formance of the perturbative strategy is comparable to that of
the rewiring strategy. The perturbative strategy is superior to
the rewiring strategy for the ER model and vice versa for the
BA model. Because the rewiring strategy is computationally
costly and may be too demanding to be implemented in some
real applications, the node removal according to the pertur-
bative strategy seems to be a feasible choice for enhancing
�2.

D. Accuracy of the perturbative strategy

When deriving the perturbative strategy, we crucially as-
sumed that �u is negligible compared to u−uiêi. We justify
this assumption as follows. A node that is removed according
to the perturbative strategy tends to have large ��2 and a
small degree. If the removed node has a small degree, the
number of the nonzero entries of the corresponding �L is
relatively small. Therefore, a relatively small number of the
entries of u would be directly affected by the node removal,
and we would obtain a small �u.

To probe the validity of this assumption and quantify the
error in estimating ��2, we measure two kinds of relative
estimation error during the course of sequential node re-
moval according to the perturbative strategy. The first quan-
tity is the average of 	��u� j / �u−uiêi� j	 over node j �1� j
�N , j� i�, where i is the index of the removed node. The
second quantity is the difference between ��2 obtained from
the perturbative strategy and the actual ��2, which is nor-
malized by the actual ��2. We take averages of these quan-
tities over 200 generated networks having N=250.

For the five network models, 	��u� j / �u−uiêi� j	 for �k�
=10 and �k�=40 is shown in Figs. 5�a� and 5�b�, respectively.
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FIG. 4. Numerical results for the ER and BA models with N
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against the number of rewired links. �b� Results for node removal.
The normalized �2 averaged over ten realizations is plotted against
the number of removed nodes. We set �k�=4 in both networks.
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yields a connected network.
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The magnitude of �u relative to that of u−uiêi is sufficiently
small. The relative estimation error in ��2 for the removed
nodes is shown for �k�=10 and �k�=40 in Figs. 5�c� and 5�d�,
respectively. As expected, the relative estimation error in
��2 is generally small. We conclude that, up to our numeri-
cal efforts, the perturbative strategy does not suffer from a
crucially large error.

IV. CONCLUSIONS

We explored efficient strategies to sequentially remove
nodes of networks in order to increase or maintain a large
value of the spectral gap �i.e., second smallest eigenvalue of
the Laplacian matrix� of the undirected and unweighted net-
work. We introduced a perturbative strategy among others.
For a variety of networks, this strategy generally performed
well compared to heuristic strategies in which we sequen-
tially remove the nodes with the smallest degree or the
smallest betweenness centrality. In most of our numerical
results, the spectral gap increased until the removal of a
fairly large fraction of nodes ��50%�. Occasionally, the per-
turbative strategy is even more efficient than the optimal
sequential strategy despite its decreased computational cost.
Although we focused on unweighted networks, the extension
of the perturbative strategy to the case of weighted networks
is straightforward.

In chaotic dynamical systems on networks, synchroniza-
tion is often facilitated by a small value of R=�N /�2, where
�2 and �N are the second smallest eigenvalue and the largest
eigenvalue of the Laplacian matrix, respectively. Dynamics
whose synchronizability is determined by R belongs to class
III �2,9� �also termed type I �4��. In contrast, we have been
concerned with the synchronization of the class II �2,9� �also
termed type II �4�� dynamics in which synchronization is
facilitated in networks with large �2. To address class III or
type I synchronizability, we developed the perturbative strat-
egy for minimizing R upon the removal of nodes and as-
sessed its efficiency on some model networks. However, the
results were generally poor �results not shown�. The pertur-
bative strategy failed mainly because it does not accurately
estimate the change in �N. The applicability of our results is
limited to class II or type II dynamics.
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