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Spike-timing dependent plasticity (STDP) is an organizing principle of biological neural networks. While
synchronous firing of neurons is considered to be an important functional block in the brain, how STDP shapes
neural networks possibly toward synchrony is not entirely clear. We examine relations between STDP and
synchronous firing in spontaneously firing neural populations. Using coupled heterogeneous phase oscillators
placed on initial networks, we show numerically that STDP prunes some synapses and promotes formation of
a feedforward network. Eventually a pacemaker, which is the neuron with the fastest inherent frequency in our
numerical simulations, emerges at the root of the feedforward network. In each oscillatory cycle, a packet of
neural activity is propagated from the pacemaker to downstream neurons along layers of the feedforward
network. This event occurs above a clear-cut threshold value of the initial synaptic weight. Below the thresh-

old, neurons are self-organized into separate clusters each of which is a feedforward network.
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I. INTRODUCTION

Synchronous firing of neurons has been widely observed
and is considered to be a neural code that adds to firing rates.
For example, experimental evidence suggests the relevance
of synchronous firing in stimulus encoding [1], feature bind-
ing [2,3], and selective attention [3,4]. Collective dynamical
states of neurons including synchrony may appear as a result
of self-organization based on synaptic plasticity. Modifica-
tion of synaptic weights (i.e., weights of edges in the net-
work terminology) often occurs in a manner sensitive to rela-
tive spike timing of presynaptic and postsynaptic neurons,
which is called spike-timing-dependent plasticity (STDP). In
the commonly found asymmetric STDP, which we consider
in this work, long-term potentiation (LTP) occurs when pr-
esynaptic firing precedes postsynaptic firing by tens of mil-
liseconds or less, and long-term depression (LTD) occurs in
the opposite case [5]. The amount of plasticity is larger when
the difference in the presynaptic spike time and the postsyn-
aptic spike time is smaller [5].

The asymmetric STDP reinforces causal pairs of presyn-
aptic and postsynaptic spikes and eliminate other pairs.
Based on this property of STDP, how STDP may lead to
various forms of synchronous firing has been studied in both
experiments and theory. Synchronous firing in the sense of
simultaneity of spike timing can be established in recurrent
neural networks when the strength of LTP and that of LTD
are nearly balanced [6]. Large-scale numerical simulations
suggest that reproducible spatiotemporal patterns of spike
trains self-organize in heterogeneous recurrent neural net-
works [7,8]. Self-organization of clusters of synchronously
firing neurons that excite each other in a cyclic manner has
also been reported [9,10].

We previously showed that STDP leads to formation of
feedforward networks and entrainment when there is a pace-
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maker in the initial network [11]. We considered random
networks of coupled oscillators whose synaptic weights
change slowly via STDP. We assumed that the oscillators
have a common inherent frequency except a single pace-
maker whose inherent frequency is larger. By definition, the
rhythm of the pacemaker is not affected by those of other
oscillators. The network generated via STDP is a feedfor-
ward network whose root is the pacemaker. In a final net-
work, a spike packet travels from the pacemaker to the other
neurons in a laminar manner. The neurons directly postsyn-
aptic to the pacemaker fire more or less synchronously just
after the pacemaker does. These neurons form the first layer.
These neurons induce synchronous firing of the neurons di-
rectly postsynaptic to them, which define the second layer. In
this fashion, a spike packet starting from the pacemaker
reaches the most downstream neurons within relatively short
time, which resembles the phenomenology of the synfire
chain [12]. Compared to the case of frozen synaptic weights,
a pacemaker entrains the rest of the network more easily with
STDP in the meaning that entrainment occurs with smaller
initial synaptic weights.

The previous work does not explain how pacemakers
emerge. No matter whether the pacemakers are intrinsic os-
cillators or network oscillators, they pace rhythms of other
elements without being crucially affected by other rhythms.
Although some pacemakers may be “robust” oscillators
whose rhythms are insensitive to general input, a more natu-
ral explanation may be that pacemakers emerge through syn-
aptic plasticity in a neural network in which pacemakers are
initially absent. In this case, emergent pacemakers do not
have to be robust oscillators; their thythms can change in
response to external input. The emergent network topology
makes such neurons pacemakers by eliminating incoming
synapses. A neuron would fire with its own rhythm if it is not
downstream to any neuron. This scenario is actually the case
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for two-neuron networks [11,13]. Here we are concerned to
networks of more than two neurons. An associated question
is which oscillator may become a pacemaker.

In this work, we numerically investigate recurrent net-
works of coupled phase oscillators subject to STDP. We
show that when the initial synaptic weights are strong
enough, STDP indeed yields feedforward networks so that
downstream neurons are entrained by an emergent pace-
maker. To our numerical evidence, the emergent pacemaker
is always the neuron with the largest intrinsic frequency. Be-
low the threshold for entrainment, STDP leads to the segre-
gation of the initial neural network into subnetworks of feed-
forward networks.

1I. MODEL
A. Coupled phase oscillators

We model dynamics of neural networks by N coupled
phase oscillators whose synaptic weights are plastic. Al-
though a majority of real neurons fire in the excitable (i.e.,
fluctuation-driven) regime, for tractability we use phase os-
cillators, which fire in an oscillatory manner. Generally
speaking, phase transitions are more easily and clearly deter-
mined in the oscillatory regime than in the excitable regime.
This is a reason why collective neural dynamics [14,15] in-
cluding ones associated with STDP [6,11,16] have been ana-
lyzed in the oscillatory regime actually to give insights into
dynamics of neural networks possibly operating in the excit-
able regime. In the following, we report numerical results for
N=3 and N=100.

The state of neuron i(1 =i=N) is represented by a phase
variable ¢; €[0,2). We identify ¢;=0 and ¢;=27. When
¢; crosses 0 in the positive direction, neuron i is defined to
fire. We denote by #; and #; the spike time of presynaptic and
postsynaptic neurons. If ¢; crosses 0 in the positive
direction as time advances from ¢ to f+Az, we set
ti=t+[27— (1) /[ 27+ pi(t+Ar)— () ]Az. As the initial
condition, we set ¢;=0 (1 =i=N) for N=3. We adopt this
artificial initial condition to draw phase diagrams to system-
atically understand possible routes to synchrony via STDP.
For N=100, ¢,(0) is picked randomly and independently for
each i from the uniform density on [0,27). Neuron i is en-
dowed with inherent frequency w; so that it fires regularly at
rate w;/27 when isolated. Connectivity between neurons is
unidirectional and weighted, consistent with the properties of
chemical synapses. The set of edges in a network is denoted
by E. In other words, (j,i) € E if neuron j is presynaptic to
neuron i. Dynamics of the coupled phase oscillators are
given by

@ 2 gﬂ sin( ¢

s <k> - ¢)+ 0§, (1)

where (k) is the average in-degree of neuron i, g;; is a syn-
aptic weight, and §& represents the standard Gaussian white
noise independent for different i. As a result of the phase
reduction theory [17], the coupling term in the oscillatory
regime is generally given by a 2m-periodic function of the
phase difference ¢;—¢; under the assumption of weak cou-
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pling. This is also the case for pulse coupling, for which
averaging an original pulse coupling term over one oscilla-
tory cycle results in a coupling term as a function of ¢;—¢;
[14]. Modeling realistic synaptic coupling needs a coupling
term that contains higher harmonics [14]. However, our ob-
jective in the present paper is not to precisely describe the
neural dynamics but to clarify general consequences of
STDP under the oscillatory condition. We thus employ the
simplest coupling term (i.e., sinusoidal coupling).

For N=3, we set the amplitude of the noise 0=0.0071 so
that the phase transitions are sharp enough and artificial reso-
nance that is prone to occur when inherent frequencies sat-
isfy M;w;=M;w; for small integers M; and M; (1=i<j
=N) is av01ded Accordingly, an 1ndepende£ normal vari-
able with mean 0 and standard deviation oyAr=0.000 71 is
added to each neuron every time step Ar=0.01; we use the
Euler-Maruyama integration scheme with unit time At. To
determine the phase transitions for N=100, we do not apply
dynamical noise because, up to our numerical efforts, the
numerical results do not significantly suffer from artificial
resonance. In some other simulations with N=100, we add
different amplitudes of dynamical noise to examine the ro-
bustness of the results.

B. STDP

With STDP, g;; is repeatedly updated depending on spike
timing of neuron j and i. Specifically, LTP occurs when a
postsynaptic neuron fires slightly after a presynaptic neuron
does, and LTD occurs in the opposite case [5]. We assume
that synaptic plasticity operates much more slowly than fir-
ing dynamics. We denote by A* and A~ the maximum
amount of LTP and that of LTD incurred by a single STDP
event. Most of previous theoretical work supposes that A~ is
somewhat, but not too much, larger than A*, to avoid explo-
sion in firing rates and to keep neurons firing [6—11]. There-
fore we set A*/A™=0.9. How a single spike pair specifically
modifies the synaptic weight is under investigation [8,18],
and triplets or higher-order combination of presynaptic and
postsynaptic spikes rather than a single presynaptic and
postsynaptic spike pair may induce STDP [19]. However, we
consider the simplest situation in which STDP modifies syn-
aptic weights in an additive manner and the amount of STDP
is determined by the relative timing of a presynaptic and
postsynaptic spike pair. A single synaptic modification Ag;;
triggered by a spike pair is represented by

t.—t:
A
A+exp<— T ), t]_tl<0

Agji = (2)

ti—t,
-A” exp(-f—’>, ti—1,>0,
T

where 7 is the characteristic time scale of the learning win-
dow, which is known in experiments to be 10-20 ms [5].
Given that inherent frequencies of many pyramidal neurons
roughly range between 5 and 20 Hz, 7 is several times
smaller than a characteristic average interspike interval.
Therefore, following [11], we set 7=1/6 X 277/ w, where o is
a typical value of spike frequency that is used to determine
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w;. Following our previous work [11], we set w=8.1. Be-
cause learning is slow compared to neural dynamics, A~ must
be by far smaller than a typical value of g. To satisfy this
condition, we set A”=0.001 for N=3. When N=100, average
in-degree (k) is set equal to 10. This implies that a neuron
receives about five to ten times more synapses than when
N=3. To normalize this factor, we set it A~=0.0001 for
N=100.

We assume that g;; is confined in [0,g,,,,]; all the syn-
apses are assumed to be excitatory, because the asymmetric
STDP explained in Sec. I has been found mostly in excita-
tory synapses. Because dynamical noise is assumed not to be
large, all the synaptic weights usually develop until g;; al-
most reaches either g,,,, or 0, until when we run each simu-
lation run. Note that, even if gﬁ:O is reached, (j,i) still
belongs to E. The upper limit g,,,, is determined so that a
notion of synchronization that we define in Sec. II C does not
occur when g;;=g,,,» V(j,i) € E. Accordingly, we set g,
=7.5 and g,,,,=15 for N=3 and N=100, respectively.

C. Measurement of synchrony

To obtain the threshold for synchrony in Secs. IIl A and
III B, we start numerical simulations with the initial condi-
tion g;=go, V(j,i) € E. There are various notions of syn-
chrony. We focus on the possibility of frequency synchrony
in which neurons fire at the same rate. In the oscillatory
regime, frequency synchrony is commonly achieved in two
main ways. One is when neurons are connected by suffi-
ciently strong mutual coupling. Then they oscillate at the
same rate and with proximate phases. The other is when
some neurons entrain others. When upstream neurons, which
serve as pacemakers, entrain downstream neurons so that
they are synchronized in frequency, synchronous firing in the
sense of spike timing may be missing due to synaptic delay.
However, neurons located at the same level in the hierarchy
relative to the pacemakers tend to have close spike timing
[11,20]. We explore possible emergence of such dynamics
when pacemakers are initially absent in networks.

We quantify the degree of frequency synchrony by order

parameter r defined by
2
2 ai ! ) > (3)

1
r= 10g10|:N; ((1)1
where w;=d¢;/dt is the actual instantaneous frequency of
neuron i/ when coupled to other neurons. If all the neurons
fire exactly at the same rate, » would become negative infin-
ity. In the actual frequency synchrony, r takes a large nega-
tive value mainly because of time discretization. We manu-
ally set r.=—4 for N=3 and r.=-9 for N=100, so that
r=r, corresponds to the full frequency synchrony. The value
of r, for N=100 is smaller than for N=3 for two reasons.
First, in the numerical simulations determining the degree of
frequency synchrony, dynamical noise is present for N=3
and absent for N=100. Second, we are concerned to the fre-
quency synchrony of all the neurons so that
S{(@;—1/NZ; @;)? is small regardless of N; we have to nor-
malize the prefactor 1/N in Eq. (3).
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(a) (b)

FIG. 1. Complete graph (a) without a pacemaker and (b) with a
pacemaker.

III. RESULTS
A. Networks of three neurons

Our goal is to understand dynamics of large neural net-
works. As a starting point, we examine network evolution
and possibility of frequency synchrony using small net-
works, which will help us understand dynamics of large net-
works. Two-neuron networks were previously analyzed [11].
We need at least three neurons to understand competition
between different synapses, pruning of synapses, and effects
of heterogeneity. Accordingly, we examine dynamics of dif-
ferent three-neuron networks under STDP.

1. Complete graph

Consider the complete graph [Fig. 1(a)], in which every
pair of neurons is bidirectionally connected. The complete
graph does not survive STDP because LTP of a synapse im-
plies LTD of the synapse in the reversed direction and the
amount of LTD is assumed to be larger than that of LTP for
the same time lag. We examine which synapses survive and
whether frequency synchrony emerges through STDP. If a
predetermined pacemaker exists in a network, the activity of
the other neurons will be entrained into the rhythm of the
pacemaker with sufficiently large initial synaptic weights,
which was previously shown for N=2 and N=100 [11]. Here
we consider N=3 and compare numerical results when a
pacemaker is initially present and absent in the complete
graph. Note that the effective initial network when the pace-
maker neuron 1 is initially present is the one shown in Fig.
1(b), because the synapses toward the pacemaker are defined
to be entirely ineffective.

First, we examine the relation between heterogeneity in
inherent frequencies, initial synaptic weights, and synchrony.
We expect that small heterogeneity and large initial synaptic
weights favor synchrony. To focus on phase transitions, we
reduce the number of parameters by setting all the initial
synaptic weights equal to g, and restrain inherent frequencies
Wy, Wy, and w3 ((,012(1)22603) by imposing, W) —WHr=wy
—w3;=Aw, where w,=8.1. Numerically obtained phase dia-
grams are shown in Figs. 2(a) and 2(b) for the cases in which
a pacemaker is initially present and absent, respectively. The
results are qualitatively the same for the two situations. The
neurons get disconnected and fire independently as a result
of STDP for sufficiently small g, or sufficiently large Aw
(blue regions labeled D). A feedforward network whose root
is the fastest oscillator emerges for sufficiently large g, or
sufficiently small Aw (yellow regions labeled A). Then all
the neurons rotate at frequency w;. In the intermediate re-
gime (green regions labeled C), final synaptic weights satisfy
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FIG. 2. (Color) Phase diagrams for the complete graph in the
[(a) and (b)] Aw-g, and [(c) and (d)] Aw;-Aw, spaces. One pace-
maker neuron is initially present [(a) and (c)] or absent [(b) and
(d)]. We run numerical simulations 20 times for each pair of param-
eter values. We add the red element of the RGB color scheme by the
maximum amount divided by 20 when g;, survives in a simulation
run. Similarly, the green is added when g,3 survives, and the blue is
added when all the neurons get disconnected. Yellow regions appear
when both g, and g,3 survive, since the combination of red and
green is yellow. In this case, it turns out that g3 also survives. We
verified that no other connectivity, such as survival of g3 without
survival of g1, or g,3, and survival of g5, g31, Or g3,, appears except
at points near phase transitions and resonance. Near phase transi-
tions, we exclude such exceptional runs from the statistics. In the
resonance regions (e.g., Aw=2.7 and gy=0.4), the three neurons
may remain connected. In this situation, however, synaptic weights
keep oscillating, and any pair of the three neurons is not in fre-
quency synchrony. Therefore, we judge such a run as being com-
pletely desynchronized and colored blue (labeled D).

8237 8max a0d &1, 813, 8215 §31, and g3 =0. In this case,
neuron 2 entrains neuron 3 so that they oscillate at frequency
w,, whereas neuron 1 gets disconnected and oscillates at fre-
quency w;. We rarely observed the case in which neuron 1
entrains 2 (or 3) and neuron 3 (or 2) gets isolated. Although
w|—w,=w,— w3, neuron 1 is more likely to segregate from
the network than neuron 3 is. Quantitatively speaking, Figs.
2(a) and 2(b) indicate that the entrainment of the entire net-
work by the fastest neuron (i.e., neuron 1) is to some extent
easier to realize when the pacemaker is initially absent than
present (yellow regions labeled A). In Figs. 2(a) and 2(b), the
phase diagrams are disturbed along vertical lines at
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FIG. 3. (a) Two-neuron network. (b) Threshold for frequency
synchrony for the two-neuron networks corresponding to the
Aw;=0 line and the Aw,=0 line in Figs. 2(c) and 2(d).

Aw=2.7. This artifact comes from the fact that w,, w,, and
w3 approximately satisfy the resonance condition (i.e.,
M,0,=M,w,=M;w; with small integers M, M,, and M3).
In some of the following figures, similar disturbance appears
along special lines. We can wash away these artifacts by
increasing the amount of dynamical noise. However, we pre-
fer not doing so to prevent the boundaries between different
phases from being blurred too much.

Next, to examine what happens when w;, w,, and w;
change independently, we set g,=0.15, w,=8.1, and vary
Aw, = w, - w, and Aw, = w,— w;. Numerical results with and
without a pacemaker are shown in Figs. 2(c) and 2(d), re-
spectively. Figures 2(c) and 2(d) are similar to each other,
except yellow spots in the red region (labeled B) in Fig. 2(c).
These spots represent entrainment facilitated due to the arti-
ficial resonance condition satisfied by w;, w,, and w;. Both

(a)

FIG. 4. (Color) (a) Feedforward loop. [(b) and (c)] Phase dia-
grams for the feedforward loop in two different parameter spaces.
See Fig. 2 for the color code.
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in Figs. 2(c) and 2(d), g,3 is easier to survive than g, is,
consistent with Figs. 2(a) and 2(b). This is indicated by the
fact that the phase of the frequency synchrony of the three
neurons (yellow regions labeled A) extends to a larger value
of Aw,>0 along the line Aw;=0 than to the value of
Aw, >0 along the line Aw,=0, and that the phase in which
neuron 2 entrains 3 (green, C) survives up to a larger value
of Aw, than the value of Aw; up to which neuron 1 entrains
neuron 2 but not neuron 3 (red, B).

To examine the cause of the asymmetry in Figs. 2(c) and
2(d) along the two lines Aw;=0 and Aw,=0, we analyze a
two-neuron network with asymmetric initial synaptic
weights shown in Fig. 3(a). The two neurons 4 and [ have
inherent frequency w;, and w; (=w;). The weights of the
synapse from neuron / to neuron / and that from neuron / to
neuron /i are denoted by g, and g, respectively. When
Aw,=0 and Aw, =0 in the three-neuron network, neurons 1
and 2 are synchronized almost from the beginning, in both
frequency and phase, because w;=w,. This is true if a trivial
condition gj,+g,;>0 1is satisfied. Then the network
is reduced to the two-neuron network by identifying w,
=0|=w), W=03, §=g13+&23, and g,=(gy+g31)/2. When,
Aw; =0 and Aw,=0 in the three-neuron network, neurons 2
and 3 are synchronized in frequency and phase as far as
g23+83,>>0. Then the network is reduced to the two-neuron
network with w,=w,, w=w=w;, g;=(g2+g13)/2, and
g,=8-1+83- For these two situations, we calculate the
threshold for frequency synchrony in the two-neuron net-
work using the semianalytical method developed in [11].
Because all the synaptic weights are initially equal to g, in
Fig. 2, the initial condition for the two-neuron network
is (gr.8)=(2g0.g0) for Aw;=0, Aw,=Aw=0, and
(gf,gbfz(go,2go) for Aw;=Aw=0, Aw,=0. The phase-
transition curves for the frequency synchrony are shown in
Fig. 3(b), indicating that the threshold is larger along the
Aw,=0 line than along the Aw;=0 line. This is consistent
with the three-neuron results shown in Figs. 2(c) and 2(d).

2. Feedforward loop

Other three-neuron networks, particularly feedforward
ones, are presumably embedded in larger neural networks in
the course of network evolution. First, we consider the net-
work shown Fig. 4(a) as the initial network.

Figure 4(a) is the phase diagram in which we vary
Aw= W] —Wr=wWyr— W3 and 80=812=813—823- The Original
network shown in Fig. 4(a) survives STDP when initial syn-
aptic weights are large or the heterogeneity is small (yellow
region labeled A). In the opposite situation, all the neurons
get disconnected and fire independently (blue, D). Neuron 1
detaches from the network and neuron 2 entrains neuron 3 in
the intermediate regime (green, C).

The phase diagram in the Aw;-Aw, parameter space with
g0=0.15 is shown in Fig. 4(b), which looks similar to Figs.
2(c) and 2(d). As in the case of the complete graph, the
situation in which neuron 1 entrains neuron 2 with neuron 3
isolated is less likely to arise than that in which neuron 2
entrains neuron 3 with neuron 1 isolated.

3. Fan-in network

Next, we examine dynamics starting from the fan-in net-
work shown in Fig. 5(a). In this network, neuron 3 is
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A
FIG. 5. (Color) (a) Fan-in network. [(b) and (c)] Phase diagrams
for the fan-in network in the Aw;-Aw, space, with (c) being an
enlargement of (b). We set g,=0.2. [(d), (e), and (f)] Phase dia-

grams in the Aw-Agy space. We set go=0.2, (d) w;=w3+0.8, (e)
w]=w3+1.0, and (f) w1=w3+1.2.

postsynaptic to two pacemaker neurons 1 and 2. We are con-
cerned to which neuron entrains neuron 3.

First, we examine the case in which two synapses are
initially equally strong and the inherent frequencies of the
two upstream neurons are different. Accordingly we set
813=823=80, W—w3=Aw|;, 0,-w3;=Aw,, g=02, and
w;=8.1. Figures 5(b) and 5(c) are the phase diagrams in the
Aw;-Aw, space, with Fig. 5(c) being an enlargement of Fig.
5(b). There are principally four phases: neither neuron 1 or 2
entrains neuron 3 (blue regions labeled D), both neurons 1
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and 2 entrain neuron 3 (yellow, A), only neuron 1 entrains
neuron 3 (red, B), and only neuron 2 entrains neuron 3
(green, C). The phase diagram is symmetric with respect to
the diagonal line Aw;=Aw,. When w; and w, are too far
from w;, all the neurons get disconnected (blue, D). Both g5
and g,3 survive only when w; =~ w, (yellow, A). This phase
extends to the disconnection phase (blue, D) on the diagonal
because, on this line, the firing of neuron 1 elicits LTP of
both synapses so does firing of neuron 2. However, this situ-
ation is not generic in that w; and w, must be very close for
this to happen. When w; and w, are not close to each other
and not too far from ws;, which upstream neuron entrains
neuron 3 is not obvious. Figure 5(b) tells that a necessary
condition for an upstream neuron to entrain neuron 3 is that
the difference between its inherent frequency and ws is less
than =1.0. This condition roughly corresponds to the re-
quirement for the entrainment in the two-neuron feedforward
network with g,=0.2. This explains the two rectangular re-
gions Aw;>1.0, Aw,<1.0, and Aw;<1.0, Aw,>1.0 of
Fig. 5(b). In the remaining region (i.e., Aw;<1.0 and
Aw,<1.0), the upstream neuron whose inherent frequency is
closer to ws, equivalently, the slower upstream neuron,
largely wins the competition (regions marked by [J). The
faster upstream neuron entrains neuron 3 when the inherent
frequency of the slower upstream neuron is very close to ws
(regions marked by O). The total size of the latter regions is
much smaller than that of the former regions.

Starting with asymmetric synaptic weights, that
iS, 813 # 23, the upstream neuron more strongly connected to
neuron 3 may entrain neuron 3. To investigate the interplay
of this effect and heterogeneity in the inherent frequency, we
perform another set of numerical simulations with
w=w3+1, my=w+Aw, g;3=g9, and gy3=go+Agy. The
asymmetry in the initial synaptic weight is parameterized by
Ag,. Figures 5(d)-5(f) show the phase diagrams in the
Aw-Ag, space for three different values of ;. On the singu-
lar line Aw=0 (i.e., ;= w,), Agy=0, both upstream neurons
entrain neuron 3. On the line Aw=0 (i.e., w; <w,), Agy=0,
neuron 1, whose inherent frequency w; is closer to w; than
w, is, entrains neuron 3 if w, is not too apart from w; [Fig.
5(d)]. This is consistent with the results in Figs. 5(b) and
5(c). However, if g,5 is sufficiently larger than g3, neuron 2
overcomes the disadvantageous situation w,— w3 > w;— w3 to
win against neuron 1 and entrains neuron 3. We confirmed
that neuron 2 exclusively entrains neuron 3 when Aw <0 and
Agy>0 (not shown).

B. Networks of many neurons

In this section, we use networks of heterogeneous N
=100 neurons to examine what network structure and dy-
namics self-organize via STDP when we start from random
neural networks. The inherent frequencies of the neurons are
independently picked from the truncated Gaussian distribu-
tion with mean 8.1, standard deviation 0.5, and support
w; €[7.6,8.6]. We assume that every neuron has (k)=10 ran-
domly selected presynaptic neurons on average so that an
arbitrary pair of neurons is connected by a directed edge with
probability (k)/(N—1)=0.1. Except in Sec. III B 3, where
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TABLE I. Comparison of the threshold for frequency synchrony
g, and the actual mean frequency of the neurons (@) in the fre-
quency synchrony. We calculated (@) by averaging the instanta-
neous frequency over all the neurons and over the last ten unit times
of the simulation.

Pacemaker
Present Absent
STDP Present g.=9.8 8.=0.72
(@0)=8.60 (@)=8.60
Absent g.=51 2.=0.93
(@)=8.60 (@0)=8.08

we investigate effects of heterogeneity, the initial synaptic
weight is assumed to be g, common for all the synapses. We
vary g, as a control parameter.

1. Threshold for frequency synchrony

We compare how STDP affects the possibility of entrain-
ment and formation of feedforward networks when a pace-
maker is present and when absent. To this end, we fix a
random network and a realization of w; (1 =i=N). Without
loss of generality, we assume w;=w,="-**=wy. For the
network with a pacemaker, we make the fastest neuron a
pacemaker. By definition, the rhythm of the pacemaker is not
affected by those of the other neurons even though the pace-
maker is postsynaptic to approximately (k) neurons. Using
the bisection method, we determine the threshold value of g,
above which all the neurons will synchronize in frequency.

The results without dynamical noise (i.e., 0=0) are sum-
marized in Table I. When the pacemaker is present from the
beginning, STDP drastically reduces the threshold for en-
trainment [11]. After entrainment, all the neurons rotate at
the inherent frequency of the pacemaker, that is, w;=8.60.
When a pacemaker is initially absent, STDP reduces the
threshold for frequency synchrony by 34%. Facilitation of
frequency synchrony in the absence of the initial pacemaker
is consistent with the results for the complete graph with
N=3 (Fig. 2). In this situation, the scenario to frequency
synchrony is different between the presence and the absence
of STDP. With STDP, the fastest oscillator eventually en-
trains the entire network when the initial synaptic weight is
above the threshold, as in the case of the network with a
prescribed pacemaker. Without STDP, the fastest oscillator
does not entrain the other neurons. The realized mean fre-
quency 8.08 is close to the mean inherent frequency of the
100 neurons. This suggests that frequency synchrony in this
case is achieved by mutual interaction, rather than by one-
way interaction underlying the entrainment by the fastest
neuron. Therefore, in networks without predetermined pace-
makers, STDP enables emergence of pacemakers and
changes the collective dynamics drastically.

2. Network dynamics

For 0=0, example rastergrams when there is initially no
pacemaker and g,=1.0, which is above the threshold value
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FIG. 6. Rastergrams for (a) initial 5 time units and (b) final 5
time units. (c) is an enlargement of (b). We set N=100, g,=1.0, and
o=0. The neurons are aligned according to the order of the inherent
frequency.

0.72 (see Table 1), are shown in Fig. 6. Figures 6(a) and 6(b)
correspond to the initial and final stages of a simulation run
under STDP, respectively; frequency synchrony appears as a
result of STDP. Figure 6(c), which is an enlargement of Fig.
6(b), shows that the fastest neuron entrains the other neurons
and that faster neurons tend to fire earlier in a cycle. Figure 7
shows the time course of the degree of synchrony r. Around
t=1.2X 107, r sharply drops, and all the neurons start to
oscillate at the same frequency. The effective network de-
fined by the surviving synapses in the final state is drawn in
Fig. 8. The neurons are placed so that the horizontal position
represents relative spike time in a cycle. With this ordering,
the neurons form a feedforward network. In other words,
after STDP, if a presynaptic neuron fires later than a postsyn-
aptic neuron in a cycle, this synapse is not present.

Partial entrainment occurs when g is slightly or moder-
ately smaller than the threshold value 0.72. Circles and
crosses in Fig. 9 represent the actual frequency after transient
and the inherent frequency of the each neuron, respectively,
when g(,=0.5. The neurons with the same actual frequency
belong to the same cluster. Each cluster forms a feedforward
network emanating from an emergent pacemaker. Figure 9
indicates that the neurons are divided into two clusters and

1.5x10”

0.0 0.5 1.0
time

FIG. 7. Time course of the degree of synchrony when N=100,
go=1.0, and 0=0. The values of r are plotted every 10 000 time
units.
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FIG. 8. Final network structure when N=100, go=1.0, and
0=0. The network is drawn by Pajek [21].

one isolated neuron. Neuron 2 entrains 85 other neurons all
of which are slower than neuron 2, neuron 6 entrains 12
slower neurons, and neuron 1 gets isolated. In this and fur-
ther numerical simulations we performed, the root of a feed-
forward subnetwork is always occupied by the fastest neuron
in the cluster.

Whether two neurons eventually belong to the same clus-
ter is determined by where these neurons are located on the
initial random network and by how close their inherent fre-
quencies are. If g, is smaller than the value used for Fig. 9,
two neurons have to be closer in w; to stay connected after
STDP. Then the number of clusters increases, and the num-
ber of neurons in a cluster decreases on average.

3. Robustness against dynamical noise and heterogeneity

To examine the robustness of the numerical results re-
ported in Sec. III B 2, we perform additional numerical
simulations with dynamical noise and random initial synaptic
weights. We draw initial g;(j,i) € E randomly and indepen-
dently from the uniform density on [0,2g,], where go=1.0.

With 0=0.081, the rastergram and the actual frequency of
the neurons after transient are shown in Figs. 10(a) and
10(b), respectively. With ¢=0.081, the standard deviation of
the accumulated noise in a unit time, which is equal to o,
corresponds to 1% of the phase advancement estimated by

8.6 fu
-
“w omoocoo o o o
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kN
"
-
- o,
.
-
9 g
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S 8.1 e
c— H:H++
;
.
0 "
= Hy
;
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0 20 40 60 80 100
oscillator index
FIG. 9. Segregation into clusters when N=100, g,=0.5, and
o=0. Inherent frequencies (+) and actual frequencies after STDP

(O) are shown. We estimate the actual frequencies from the phase
shifts with bins of width 10 time units.
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FIG. 10. Results for N=100, go,=1.0, with dynamical noise and
heterogeneity in the initial synaptic weights. We set [(a) and (b)]
0=0.081, [(c) and (d)] 0=0.405, and [(e) and (f)] 0=0.81. Raster-
grams for 5 time units after transient are shown in (a), (c), and (e).
The neurons are aligned according to the order of the inherent fre-
quency. Inherent frequencies (+) and actual frequencies (O) are
shown in (b), (d), and (f). Because of the dynamical noise, we
estimate the actual frequencies from the phase shifts with bins of
width 10° time units.

the mean inherent frequency of the oscillators, which is
equal to 8.1. The rastergram [Fig. 10(a)] is indicative of full
entrainment. Indeed, all the neurons eventually rotate at the
inherent frequency of the fastest neuron [Fig. 10(b)]. With
0=0.405, the neurons are divided into six synchronous clus-
ters of size 31, 26, 19, 12, 5, 4, plus three isolated neurons
[Figs. 10(c) and 10(d)]. With ¢=0.81, many neurons, par-
ticularly faster ones, rotate at their inherent frequencies
[Figs. 10(e) and 10(f)]. Consequently, there are many clus-
ters of neurons. The frequency synchrony within each cluster
is blurred by dynamical noise.

In sum, emergence of entrainment via STDP survives
some dynamical noise and heterogeneity in the initial synap-
tic weights. We have confirmed that, when the entrainment
occurs, it is quickly established at around t=10°, and the
fastest oscillator is located at the root of the feedforward
network, as in Fig. 8.

4. Network motifs

We investigated the evolution of three-neuron networks in
Sec. III A because we expect that these results have some-
thing common with evolution of such subnetworks in large
networks. The results in Sec. III A predict the following:

(i1) As a result of STDP, a neuron has at most one effec-
tive upstream neuron unless multiple upstream neurons are
very close in frequency.

There are 13 connected network patterns of three nodes.
How often each pattern appears in a network with N=100,
relative to the random network, can be quantified by the Z
score [22]. The Z score is the normalized number of a pattern
in the network, where normalization is given by the mean
and the standard deviation of the count of the pattern based
on independent samples of the randomized networks. A pat-
tern with a large Z score is a motif of the network with
N=100.

Figure 11 shows the Z score of each pattern before (circle)
and after (square) STDP, calculated by m finder [23]. We set
0=0 (i.e., no dynamical noise) in this analysis. The error bar
shows a range of one standard deviation based on ten simu-
lation runs in each of which we draw a different initial ran-
dom network and a different realization of w; (1=i=100).
Before STDP, the neural network is a directed random graph,
so that the Z score for each pattern is around zero, meaning
that no pattern is overrepresented or underrepresented sig-
nificantly. After STDP, the feedforward network whose emer-
gence and survival were observed in Sec. IIl A (i.e., pattern 5
in Fig. 11) and patterns consistent with this (i.e., patterns 1
and 2) are overrepresented. These are motifs of our final
networks. Pattern 4 is also a motif in spite of our negation in
Sec. IIT A because the two upstream neurons in pattern 4
have the same actual frequency. They are generally different
in inherent frequency but share a more upstream ancestor. As
the example network in Fig. 8 shows, existence of multiple
paths from a neuron to another due to branching and uniting
of edges is compatible with STDP. The other network pat-
terns are not significant or underrepresented. These results
are further evidence that feedforward networks are formed
by STDP in heterogeneous neural networks.
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IV. DISCUSSION

We have shown using heterogeneous coupled phase oscil-
lators that feedforward networks spontaneously emerge via
STDP when the initial synaptic weights are above the thresh-
old value. When this is the case, the pacemaker emerges at
the root of the feedforward network and entrains the others to
oscillate at the inherent frequency of the pacemaker. Al-
though these results have been known for two-neuron net-
works [11,13], we have shown them for the cases of three
and more neurons and quantified the phase transitions sepa-
rating frequency synchrony and asynchrony. The route to
frequency synchrony is distinct from a conventional route to
frequency synchrony that occurs when mutual, but not one-
way, coupling between oscillators is strong enough. Some
results obtained in this work are unique to the networks with-
out a prescribed pacemaker. First, the emergent pacemaker is
the fastest oscillator neuron according to our extensive nu-
merical simulations. Note that all the oscillators fire at this
frequency in the entrained state, whereas they fire at the
mean inherent frequency of the oscillators when the fre-
quency synchrony is realized by strong mutual coupling in
the absence of STDP. Second, when the initial coupling
strength is subthreshold, the neurons are segregated into
clusters of feedforward networks. Third, our numerical evi-
dence suggests that entrainment under STDP occurs more
easily when a prescribed pacemaker is absent than present.

In spite of a wealth of evidence that real neural circuits
are full of recurrent connectivity [24], feedforward structure
may be embedded in recurrent neural networks for reliable
transmission of information [12,25]. Feedforward transmis-
sion of synchronous volleys in rather homogeneous neural
networks as those used in this work serves as a basis of
reproducible transmission of more complex spatiotemporal
spike patterns in more heterogeneous networks. Such pat-
terns may code external input or appear as a result of neural
computation [7,12]. Feedforward structure is also a viable
mechanism for traveling waves often found in the brain [26].
Although computational roles of feedforward network struc-
ture are not sufficiently identified, our results give a support
to the biological relevance of feedforward networks. The for-
mation of feedforward networks, which we have shown for
oscillatory neurons, is consistent with numerical results for

PHYSICAL REVIEW E 79, 051904 (2009)

more realistic excitable neurons subject to STDP [27]. The
neurons that directly receive external input may be more ex-
cited and fire at a higher rate compared to other parts of a
neural circuit. Our results suggest that such a neuron or an
ensemble of neurons is capable of recruiting other neurons
into entrainment and creating feedforward structure.

We assumed the additive STDP with the nearest-neighbor
rule in which the dependence of the amount of plasticity on
the current synaptic weight and the effects of distant presyn-
aptic and postsynaptic spike pairs, triplets, and so on, are
neglected. Generally speaking, evolution of synaptic weights
is affected by the implementation of the STDP rule [18].
However, we believe that our results are robust in the varia-
tion of the STDP rule as far as it respects the enhancement of
causal relationships between presynaptic and postsynaptic
pairs of neurons. Our preliminary numerical data with excit-
able neuron models suggest that the results are similar be-
tween the multiplicative rule [18] and the additive rule [Kato
and Tkeguchi (private communication)]. Recent reports claim
the relevance of acausal spike pairs in the presence of syn-
aptic delay [10,28]. This and other factors, such as different
time scales of LTP and LTD [27], may let bidirectional syn-
apses survive as observed in in vitro experiments [29]. Incor-
porating these factors is an important future problem.

We have ignored inhibitory neurons for two reasons. First,
our main goal is to identify phase transitions regarding syn-
chrony with a simple model. Second, specific rules of STDP
are not established for inhibitory neurons, albeit some pio-
neering results [30]. Taking inhibitory neurons into account,
preferably in the subthreshold regime, warrants for future
work.
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