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Steady state and mean recurrence time for random walks on stochastic temporal networks
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Random walks are basic diffusion processes on networks and have applications in, for example, searching,
navigation, ranking, and community detection. Recent recognition of the importance of temporal aspects on
networks spurred studies of random walks on temporal networks. Here we theoretically study two types of
event-driven random walks on a stochastic temporal network model that produces arbitrary distributions of
interevent times. In the so-called active random walk, the interevent time is reinitialized on all links upon each
movement of the walker. In the so-called passive random walk, the interevent time is reinitialized only on the
link that has been used the last time, and it is a type of correlated random walk. We find that the steady state is
always the uniform density for the passive random walk. In contrast, for the active random walk, it increases or
decreases with the node’s degree depending on the distribution of interevent times. The mean recurrence time of
a node is inversely proportional to the degree for both active and passive random walks. Furthermore, the mean
recurrence time does or does not depend on the distribution of interevent times for the active and passive random
walks, respectively.
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I. INTRODUCTION

A broad range of diffusive processes on networks, from con-
sensus formation [1,2] to current flows on electric circuits [3],
can be modeled by random walks or, equivalently, by Markov
chains. Their unbiased exploration of the underlying structure
also makes them popular tools for designing algorithms for,
e.g., navigation and search on networks [4–6], defining central
nodes in a given network [7–9], community detection [10],
and respondent-driven sampling [11,12]. In tandem with these
applications, the impact of network structure on dynamics of
random walks, including the hitting time, mixing time, and
stationary density, has been extensively studied.

However, recent studies identified limitations of the clas-
sical network paradigm, where dynamics is modeled by a
dynamical process on a static underlying structure. In a
broad range of empirical systems, evidence suggests instead
that dynamics presents nontrivial correlations between events
and long-tailed interevent time distributions [13–15]. These
observations are incompatible with the Poissonian statistics
implicitly assumed in stochastic models, therefore calling for
richer models for temporal networks [16].

An important practical question concerns the impact of the
temporality of a network on diffusion. In order to address
this question, a first approach consists in simulating random
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walks on real or synthesized data of time-stamped event
sequences and to compare their dynamical properties to those
of properly defined null models [17–20]. A second approach
consists in studying analytically the properties of random
walks on specific models of temporal networks. In most
studies, however, network structure changes at regular time
intervals and transitions between networks at different times
are independent [18,21,22] or Markovian [23,24].

In the present work, we follow the latter path to analytically
model diffusion under the non-Poissonian nature of interevent
times. Previous studies proposed modeling temporal networks
as stochastic sequences of events obeying a prescribed distri-
bution of interevent times attached on each link [25–28]. A
random walk process, called the active random walk, was then
defined as a renewal process; i.e., after a walker arrives at a
node, the interevent times attached to all links incident to the
node are reinitialized [25,26,28]. Despite its non-Markovianity
owing to the fact that the rate at which an event takes place
depends on the time of the previous event, this stochastic
process can be described by a generalized master equation,
and some of its properties, such as the stationary density [25]
and the relaxation time [28], were analytically solved. In this
work, we will first derive an analytical expression for the mean
recurrence time for the active random walk. Then we consider a
different nonrenewal process, called the passive random walk,
in which interevent times are reset only on the links traversed at
each jump. We will use the fact that the passive random walk
shows a stronger non-Markovianity than the active random
walk does because passive random walkers remember their
past trajectories to some extent. Finally, we will perform
numerical simulations to test our analytical predictions and
compare the stationary density and mean recurrence time
between the two types of walks.
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II. MODEL

We consider an undirected network on N nodes. We denote
the set of nodes by V = {1,2, . . . ,N} and the set of links by
E. We often refer to this network as the aggregate network
because it is considered as the aggregation of the temporal
network, which we introduce in the following, across time.
Stochastic temporal networks add a time dimension to the
aggregated networks by assigning a random interevent time τe

to each link e ∈ E in a renewal manner [25,26]. For a chain
network of three nodes, a hypothetical sequence of interevent
times is depicted in Fig. 1. The interevent time, denoted by
τe,1, τe,2, . . . , for link e in Fig. 1, is the interval between
two consecutive activation events of the link. We denote the
probability density function (PDF) of τe by ψe(t). We assume
that the mean of τe is finite.

Link activation is an instantaneous event, and we assume
that the random walker moves from the current node to the
neighboring node through the activated link whenever it is
possible. The example shown in Fig. 1 indicates that, if the
walker starts from node 1 at t = 0, it moves to node 2 at t =
τ(1,2),1. Then it moves back to node 1 at t = τ(1,2),1 + τ(1,2),2.
After coming back to node 2 at t = τ(1,2),1 + τ(1,2),2 + τ(1,2),3,
the walker transits to node 3 at t = τ(2,3),1 + τ(2,3),2. Some
remarks are in order. First, some activation events, such
as those immediately following the interevent times τ(1,2),4

and τ(2,3),1, may not be used by a walker. Second, although
the walker’s movement as illustrated in Fig. 1 may look
deterministic, it is stochastic because the interevent times are
random variables. Third, the probability that more than one
links are simultaneously activated is equal to zero because
the model is defined in continuous time. Fourth, the walker
is assumed not to have any internal waiting time. Therefore
the walker instantaneously moves upon the activation of a link
incident to the walker’s location. Fifth, the continuous-time
nature of our model makes it different from the previously
proposed discrete-time random walk defined on the so-called
activity driven model [21]. A main difference between the
present model and those considered in Ref. [17] is that the
former generates interevent times from a given PDF, which
lends itself to an analytical study of the process, whereas the
latter uses interevent times observed in real data (and their

FIG. 1. (Color online) Schematic of the passive random walk on
an example network possessing N = 3 nodes. The walker starts at
node 1 at t = 0. The link activation is represented by horizontal bars.
τe,i (i � 1) represents the ith interevent time on link e. The random
walker follows the path indicated by the thick lines.

FIG. 2. (Color online) Schematic of the active random walk on
an example network. The walker starts at node 1 at t = 0 and follows
the path indicated by the thick lines. Note that τ(2,3),2 is not the second
interevent time on link (2,3). It is a realization of the interevent time
drawn at t = τ(1,2),1.

randomizations), more appropriate for the study of empirical
data.

We analyze two versions of random walks on stochastic
temporal networks [26]. The first version is the so-called
active random walk. In the active random walk, when the
random walker arrives at a node, it reinitializes the interevent
times on all links, which makes the process renewal. In this
case, the waiting time, i.e., the time for which a walker
waits on a node before the link appears, is equivalent to the
interevent time [29,30]. In the example shown in Fig. 2, once
the random walker moves from node 1 to node 2 at t = τ(1,2),1,
the new interevent times, denoted by τ(1,2),2 and τ(2,3),2, are
independently drawn. Because τ(1,2),2 > τ(2,3),2, the walker
moves to node 3 at t = τ(1,2),1 + τ(2,3),2. It should be noted
that interevent times for link (2,3) before t = τ(1,2),1 do not
matter for the movement of the walker in question, reflecting
the renewal nature of the active random walk. Phenomena
in which a node starts something in response to an external
input or the arrival to the node might be represented by the
active walk. Possible examples include the broadcasting of
gossips [25] and random surfing on the World Wide Web by
users. In the latter case, a user that has arrived at a webpage
may stay there looking at the content. Then, after a randomly
distributed amount of time, the user may decide to jump to
a different webpage, which is selected with equal probability
among the hyperlinks that the original page has.

The second version is the so-called passive random walk,
which does not assume the reinitialization at all links. When
the random walker moves to a neighbor through link e, a
new interevent time is drawn only for e. In fact, the example
shown in Fig. 1 corresponds to the passive random walk.
Transmission of infectious diseases or information may be
better described with the passive than active random walk
because infection of a node does not seem to instantaneously
affect interevent times on other links [25]. In other words,
to a first-order approximation, the intercontact time on any
link e can be regarded to obey a given distribution and is not
altered by whether an infection occurs upon the contact. Then
a pathogen or piece of information starting from an initial node
may travel to other nodes via the passive random walk. The
complexity of the passive random walk lies in its nonrenewal
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nature. In other words, transition rates of the passive random
walk depend on the trajectory that the walker has taken such
that we have to account for the entire trajectory of the random
walker to accurately evaluate its behavior. It should be noted
that for exponentially distributed interevent times the active
and passive random walks are identical and reduce to the usual
continuous-time random walk on the aggregate (i.e., static)
network.

III. ACTIVE RANDOM WALK

The steady state of the active random walk was derived
through a master equation approach in Ref. [26]. In this section,
we first review these results (Secs. III A and III B). Then, we
derive the mean recurrence time for the active random walk
(Sec. III C). The main results when the interevent times of
different links are distributed according to a common PDF are
shown in Eqs. (20) and (33) for the steady state and mean
recurrence time, respectively.

A. Probability flows

We denote the probability that the random walker is located
at node i (1 � i � N ) at time t by pi(t). The normalization is
given by

∑N
i=1 pi(t) = 1. The rate at which the walker arrives

at node j from node i at time t is denoted by qj←i(t). The
transition rate for a single walker to move from i to j at time t

is given by rj←i(t) := qj←i(t)/pi(t). The master equation that
governs the random walk is given by

d

dt
pi(t) =

∑
j ;(ji)∈E

[qi←j (t) − qj←i(t)]

=
∑

j ;(ji)∈E

[ri←j (t)pj (t) − rj←i(t)pi(t)]. (1)

If the underlying static network is connected, which we assume
in the following, the random walk is mixing, and the stationary
density, denoted by p∗

i := limt→∞ pi(t), is obtained if we set
limt→∞ dpi/dt = 0 for all nodes i.

For exponentially distributed interevent times, the transition
rate is given by

rj←i(t) = ri←j (t) =
{

1
〈τ(ij )〉 if (ij ) ∈ E,

0 if (ij ) 	∈ E,
(2)

where 〈τ(ij )〉 denotes the mean of τ(ij ), the interevent time on
link (ij ). By combining Eq. (1) and rj←i(t) = ri←j (t), we
conclude that the steady state is the uniform distribution [31].

For arbitrary interevent time distributions, we cannot
usually calculate rj←i(t). In addition, rj←i(t) may not be
symmetric with respect to i and j so that the steady state
may deviate from the uniform distribution. To calculate the
steady state in this case, we define f (t ; j ← i) as the rate at
which the walker transits from i to j after time t has elapsed
since the walker arrived at i. This event happens when link (ij )
is activated at time t and any other link (ik), where k 	= j , has
not been activated by t . Because all τ(ik), with the case k = j

included, are reinitialized at the arrival of the walker at node

i, we obtain

f (t ; j ← i) = ψ(ij )(t)
∏

k 	=j ;(ik)∈E

∫ ∞

t

ψ(ik)(t
′) dt ′. (3)

We use Eq. (3) to derive the master equation for the active
random walk. The rate at which the random walker reaches
node j from an adjacent node i at time t satisfies

qj←i(t) =
∫ t

0
f (t − t ′; j ← i)qi(t

′) dt ′ + pj←i(0)δ(t), (4)

where

qi(t) :=
∑

k;(ki)∈E

qi←k(t) (5)

is the rate at which the walker arrives at node i at time t from
an arbitrary neighbor, pj←i(0) are initially chosen weights on
the links satisfying ∑

j ;(ji)∈E

pi←j (0) = pi(0), (6)

and δ(t) is Dirac’s delta function. A detailed proof for Eq. (4)
is found in Ref. [26]. By substituting Eq. (4) in Eq. (1), we
obtain

d

dt
pi(t) =

∑
j ;(ji)∈E

∫ t

0
[f (t − t ′; i ← j )qj (t ′)

− f (t − t ′; j ← i)qi(t
′)]dt ′ (7)

for any t > 0. We define

f (t ; i) :=
∑

j ;(ji)∈E

f (t ; j ← i), (8)

i.e., the PDF of the time to transit from node i to somewhere.
In other words, f (t ; i) is the PDF of minj ;(ij )∈E τ(ij ), which
is the first time at which a link incident to i is activated. By
integrating Eq. (7) and abbreviating

φi(t) :=
∫ ∞

t

f (t ′; i) dt ′, (9)

which is the probability to remain at i for a time longer than t ,
we obtain

pi(t) =
∫ t

0
φi(t − t ′)qi(t

′) dt ′, (10)

for any t > 0. The derivation of Eq. (10) is shown in the
Appendix.

B. Steady state

1. General case

The steady state of the active random walk is evaluated via
the Laplace transform of Eqs. (4) and (10), expansion of the
exponential, and application of the final value theorem [26].
Here we briefly present a slightly modified derivation of the
steady state. We take the Laplace transform of Eq. (10) to
obtain

p̂i(s) = φ̂i(s)q̂i(s). (11)
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Here p̂i(s) = ∫ ∞
0 pi(t)e−st dt is the Laplace transform of

pi(t), and parallel definitions are applied to φ̂i(s) and q̂i(s).
Equation (9) implies

φ̂i(0) =
∫ ∞

0

∫ ∞

t

f (t ′; i) dt ′ dt =
∫ ∞

0
tf (t ; i)dt

=
〈

min
�;(i�)∈E

τ(i�)

〉
. (12)

According to the final value theorem, the steady state probabil-
ity for node i, denoted by p∗

i , is given by p∗
i = lims→0 sp̂i(s).

By combining Eqs. (11) and (12), we obtain

p∗
i =

〈
min

�;(i�)∈E
τ(i�)

〉
q∗

i , (13)

where q∗
i := limt→∞ qi(t) is the rate at which the random

walker arrives at node j in the steady state.
To calculate q∗ := (q∗

1 , . . . ,q∗
N )�, we define the N×N

matrices

Fa(t) := (f (t ; j ← i))ji , (14)

and Fa := F̂a(0), where F̂a(s) = ∫ ∞
0 Fa(t)e−st dt is the

Laplace transform of matrix Fa(t). We transform Eq. (4) into
the Laplace space to obtain

q̂(s) = F̂a(s)q̂(s) + p(0), (15)

where q̂(s) = (q̂1(s), . . . ,q̂N (s))� and p(0) = (p1(0), . . . ,
pN (0))�. We multiply both sides of Eq. (15) with s and obtain

s q̂(s) = F̂a(s)[s q̂(s)] + s p(0). (16)

By taking the limit s → 0 on both sides of Eq. (16), we find
that vector q∗ := (q∗

1 , . . . ,q∗
N )� is the dominant eigenvector of

Fa, i.e.,

q∗ = Faq∗. (17)

Suppose that the random walker just arrived at a node. Fa

contains the probabilities to make a transition from one node
to another in one step, F2

a contains the probabilities to do
so in two steps, and so on. Equation (17) implies that q∗ is
proportional to the steady state of the discrete-time random
walk on the aggregate network with transition probabilities
defined by Fa. It should be noted that q∗ is unique up to the
scaling factor because the aggregate network has been assumed
to be connected. To obtain p∗ in Eq. (13), we weight the steady
state vector of the discrete-time random walk with the mean
time for which the walker stays at the node.

2. Identical distributions

When interevent times for different links are identically
distributed according to ψ(t), Eq. (14) is reduced to

(Fa)ji =
{

1/di if (ij ) ∈ E,

0 if (ij ) /∈ E,
(18)

where di is the degree of node i. By combining Eqs. (17)
and (18), we obtain

q∗
i ∝ di, (19)

which is consistent with the fact that the steady state of the
simple random walk on an arbitrary static undirected network

is proportional to the degree [3,32]. By substituting Eq. (19)
in Eq. (13) and using

∑N
i=1 p∗

i = 1, we obtain

p∗
i = 〈min�=1,...,di

τ�〉di∑N
j=1〈min�=1,...,dj

τ�〉dj

, (20)

where τ� are i.i.d. copies of the interevent time. It should be
noted that 〈

min
�=1,...,di

τ�

〉
=

∫ ∞

0

[∫ ∞

t

ψ(t ′) dt ′
]di

dt (21)

depends solely on the degree of a node. Therefore, the steady
state depends only on the node’s degree.

If the interevent time is exponentially distributed, we obtain
〈min�=1,...,di

τ�〉 ∝ 1/di so that the steady state is the uniform
distribution. This is consistent with our previous argument
in Sec. III A, where we derived this fact directly from the
master equation [see Eq. (1)]. Otherwise, 〈min�=1,...,di

τ�〉 is
not necessarily proportional to 1/di such that the steady state
may not be the uniform distribution.

C. Mean recurrence time

Let Ti|i be the recurrence time, i.e., the time at which a
random walker starting at i returns to i for the first time. We
denote the PDF of Ti|i by g(t ; i|i). Our goal in this section is
to determine the mean recurrence time given by

〈Ti|i〉 :=
∫ ∞

0
tg(t ; i|i) dt. (22)

The hopping rate of the walker generally depends on the time
already spent at a node. Therefore, we confine ourselves to
the recurrence time since the walker has just arrived at node i.
We will adapt the derivation of the mean recurrence time for
discrete-time random walks on static undirected networks [8]
to the case of the active random walk.

Denote by pi|i(t) the probability that the random walker is
located at node i at time t given it started at node i. We obtain

pi|i(t) = φi(t) +
∫ t

0
g(t ′; i|i)pi|i(t − t ′) dt ′. (23)

The first term on the right-hand side of Eq. (23) governs the
case in which the random walker has not left i until time t . The
second term accounts for the walker that has left i at least once.
By transforming Eq. (23) into the Laplace space, we obtain

p̂i|i(s) = φ̂i(s) + ĝ(s; i|i)p̂i|i(s). (24)

Equation (24) implies

ĝ(s; i|i) = p̂i|i(s) − φ̂i(s)

p̂i|i(s)

= p∗
i + sRii(s) − sφ̂i(s)

p∗
i + sRii(s)

, (25)

where

Rii(s) := p̂i|i(s) − p∗
i /s. (26)

Equation (22) implies that the mean recurrence time of
node i is the first moment of g(t ; i|i). Therefore, the mean
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recurrence time is derived by the Laplace transform of g(t ; i|i) as follows:

〈Ti|i〉 = − d

ds
ĝ(0,i|i). (27)

By substituting Eq. (25) in Eq. (27), we obtain

〈Ti|i〉 = [φ̂i(s) + sφ̂′
i(s)][p∗

i + sRii(s)] + sφ̂i(s)[Rii(s) + sR′
ii(s)]

[p∗
i + sRii(s)]2

∣∣∣∣
s=0

. (28)

Application of the final value theorem yields

lim
s→0

sRii(s) = lim
t→∞ pi|i(t) − p∗

i = 0. (29)

By using the rule of L’Hospital, we obtain

lim
s→0

s2R′
ii(s) = − lim

s→0
sRii(s) = 0. (30)

Furthermore, we recall that φ̂i(0) = 〈min� 	=i;(i�)∈E τ(i�)〉 < ∞
[see Eq. (12)], so that the tail of φi(t) decreases fast enough to
imply

lim
s→0

sφ̂′
i(s) = − lim

t→∞ tφi(t) = 0. (31)

By substituting Eqs. (12), (13), (29), (30), and (31) in Eq. (28),
we obtain

〈Ti|i〉 = 〈min�;(i�)∈E τ(i�)〉
p∗

i

= 1

q∗
i

. (32)

In particular, if interevent times on different links are identi-
cally distributed, the combination of Eqs. (20) and (32) yields

〈Ti|i〉 =
∑N

j=1〈min�=1,...,dj
τ�〉dj

di

∝ 1

di

. (33)

It should be noted that for discrete-time random walks on
undirected static networks the mean recurrence time is also
inversely proportional to the node’s degree [8].

IV. PASSIVE RANDOM WALK

In this section, we evaluate the steady state and mean
recurrence time of the passive random walk. The main results
when the interevent times of different links are distributed
according to a common PDF are shown in Eqs. (53) and (60)
for the steady state and mean recurrence time, respectively.

The difference from the active random walk is that the
move of a walker does not reinitialize interevent times except
on the link used for that jump. When the passive random
walker arrives at a node, links incident to the node have thus
already been inactive for some random time. Therefore, in

contrast to the case of the active random walk, the intervent
time and the waiting time τ̃e (e ∈ E), i.e., the time until link e

is activated since the random walker arrives at a node incident
to e, are different in general. They are equivalent only when
the interevent time distribution is exponential, corresponding
to the fact that the Poisson process is memoryless. Otherwise,
the waiting time depends on the time at which the random
walker arrives at a node. This distinction is important because
the waiting time plays a direct role in diffusion on networks,
whereas the interevent time plays only an indirect role.

When the arrival of a walker on a node and the activation of
an link are independent processes, it is known that the waiting
time distribution ρe(t) is given in terms of the interevent time
distribution ψe(t) by

ρe(t) = 1

〈τe〉
∫ ∞

t

ψe(t ′) dt ′ (34)

and that the average waiting time depends on the variance of
the interevent time, a property called the waiting time paradox
or bus paradox in queuing theory [29]. In general, the time at
which the random walker jumps to an adjacent node depends
on the previous trajectory of the walker. However, we assume
that Eq. (34) holds true in the following analysis.

A. Probability flows

In the following, we perform an approximation in order to
analytically evaluate the waiting time, steady state, and mean
recurrence time of the passive random walk. To this end, we
neglect the trajectory of the random walker except for its last
and current positions denoted by k and i, respectively. More
precisely, we retain the last activation time of the link through
which the walker arrived at i and suppose that all the other
links were activated at random times in the past.

The waiting time for link (ik) is given by the interevent
time distribution ψ(ik)(t). The waiting times for all the other
links incident to i are approximately distributed according to
Eq. (34). The PDF of the time when the walker transits from
node i to node j given that it arrived at node i from node k is
approximated by

f (t ; j ← i|i ← k) ≈
{

ρ(ij )(t)
∏

� 	=j,k;(i�)∈E[
∫ ∞
t

ρ(i�)(r) dr]
∫ ∞
t

ψ(ik)(r) dr (j 	= k),

ψ(ij )(t)
∏

� 	=j,k;(i�)∈E[
∫ ∞
t

ρ(i�)(r) dr] (j = k).
(35)

Equation (35) suggests that the trajectory of the random walker
impacts the order of link activation. In particular, when the
interevent time obeys a long-tailed distribution, a transition

from node i back to node k is more likely than that from
i to another node. It should be noted that the probability of
transition does not depend on the destination node in the case
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of the active random walk. It should be also noted that Eq. (35)
is exact for exponentially distributed interevent times.

Similarly to Eq. (4), we obtain

qj←i(t) ≈
∑

k;(ki)∈E

[∫ t

0
f (t − t ′; j ← i|i ← k)qi←k(t ′) dt ′

]

+pj←i(0)δ(t), (36)

where the initial condition satisfies Eq. (6). Similarly to Eq. (9),
we define

φj←i(t) :=
∑

k;(jk)∈E

∫ ∞

t

f (t ′; k ← j |j ← i) dt ′, (37)

which is the approximate probability that the walker stays at
node j for time longer than t given that it arrived from node
i. By substituting Eq. (36) in Eq. (1), using Eq. (37), and
performing a calculation similar to the derivation of Eq. (10)
in the Appendix, we obtain

pi(t) ≈
∑

j ;(ji)∈E

[∫ t

0
φi←j (t − t ′)qi←j (t ′) dt ′

]
(38)

for any t > 0. Equations (36) and (38) govern the dynamics of
the passive random walk.

B. Steady state

1. General case

To calculate the approximate steady state distribution, we
proceed similarly to the case of the active random walk. By
taking the Laplace transform of Eq. (36), we obtain

q̂j←i(s) ≈
∑

k;(ki)∈E

[f̂ (s; j ← i|i ← k)q̂i←k(s)] + pj←i(0).

(39)
In terms of the vectors, Eq. (39) is written as

q̂p(s) ≈ F̂p(s)q̂p(s) + pp(0), (40)

where F̂p(s) is the Laplace transform of the 2|E|×2|E| matrix
(|E| is the number of links in the aggregate network) given by

Fp(t) := (f (t ; j ← i|� ← k))(ij ),(k�)∈E, (41)

q̂p(s) is the Laplace transform of the 2|E|-dimensional column
vector qp(t) := (qi←j (t))(ij )∈E , and pp(0) is the Laplace
transform of the 2|E|-dimensional column vector pp(0) :=
(pi←j (0))(ij )∈E . In Eq. (41), we define f (t ; j ← i|� ← k) ≡ 0
for i 	= � because such a transition is impossible.

By multiplying both sides of Eq. (40) by s and letting
s → 0, we obtain

q∗
p ≈ Fpq∗

p, (42)

where q∗
p := (q∗

i←j )(ij )∈E = ( limt→∞ qj←i(t))(ij )∈E and Fp =
F̂p(0). To determine the steady state p∗

i , we transform Eq. (38)
to the Laplace space and multiply both sides by s to obtain

sp̂i(s) ≈
∑

j ;(ji)∈E

φ̂i←j (s)sq̂i←j (s). (43)

By setting s → 0 in Eq. (43), we obtain

p∗
i ≈

∑
j ;(ji)∈E

φ̂i←j (0)q∗
i←j . (44)

Finally, Eq. (37) implies

φ̂i←j (0) =
∑

k;(ik)∈E

∫ ∞

0

∫ ∞

t

f (t ′; k ← i|i ← j ) dt ′ dt

=
∫ ∞

0
t

∑
k;(ik)∈E

f (t ; k ← i|i ← j ) dt

=
〈

min
k 	=j ;(ik)∈E

{τ(ij ),τ̃(ik)}
〉
. (45)

Therefore, φ̂i←j (0) is the (approximate) mean time for which
a walker arriving at i from node j waits before moving to a
neighbor.

In summary, the steady state is approximately given by

p∗
i ≈

∑
j ;(ij )∈E

〈
min

k 	=j ;(ik)∈E
{τ(ij ),τ̃ik}

〉
q∗

i←j , (46)

where q∗
i←j is the solution of Eq. (42), and the normalization

is given by
∑N

i=1 p∗
i = 1.

2. Identical distributions

Denote the components of Fp by (Fp)(ji),(�k) for (ij ),(k�) ∈
E. When interevent times for different links are identically
distributed according to ψ(t), which we assume in this section,
we obtain∑

(�k)∈E

(Fp)(�k),(ji) =
∑

(ik)∈E

(Fp)(ik),(ji) =
∑

(ik)∈E

(Fp)(ij ),(ki) = 1.

(47)

The first equality in Eq. (47) follows from the fact that
(Fp)(�k),(ji) > 0, indicating that the walker moved from j to i

and then from � to k, if and only if � = i. The second equality
follows from the assumption that ψe(t) = ψ(t) for any e ∈ E.
Equation (47) indicates that Fp is a doubly stochastic matrix.
Therefore, the solution of Eq. (42) is given by q∗

p ∝ 1, where
1 represents the 2|E|-dimensional column vector whose all
elements are equal to unity. By using Eq. (5), we obtain

q∗
i ∝ di. (48)

This result is the same as that for the active random walk with
identical interevent time distributions [see Eq. (19)].

To evaluate the right-hand side of Eq. (46), we use〈
min

k 	=j ;(ik)∈E
{τ(ij ),τ̃ik}

〉
=

〈
min

k=1,...,di−1
{τ,τ̃k}

〉

=
∫ ∞

0

[∫ ∞

t

ψ(t ′) dt ′
]

×
[∫ ∞

t

ρ(t ′) dt ′
]di−1

dt, (49)

where τ̃k are i.i.d. copies of the waiting time distributed
according to a common PDF ρ(t). By substituting∫ ∞

t

ψ(t ′) dt ′ = −〈τ 〉 d

dt

∫ ∞

t

ρ(t ′) dt ′, (50)

which is derived by the combination of the definition of ρ(t)
[see Eq. (34)] and the Leibniz integral rule, in Eq. (49), we
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obtain〈
min

k=1,...,di−1
{τ,τ̃k}

〉
=

∫ ∞

0

[
−〈τ 〉 d

dt

∫ ∞

t

ρ(t ′) dt ′
]

×
[∫ ∞

t

ρ(t ′) dt ′
]di−1

dt

= 〈τ 〉 − (di − 1)
〈

min
k=1,...,di−1

{τ,τ̃k}
〉
. (51)

In the last equality in Eq. (51), we used integration by parts.
Equation (51) implies〈

min
k=1,...,di−1

{τ,τ̃k}
〉
= 〈τ 〉

di

. (52)

Therefore, the mean time that the passive random walker
spends at a node before transiting to a neighboring node
does not depend on ψ(t) except for the dependence on
〈τ 〉. By combining Eqs. (5), (46), (48), and (52) and using∑N

i=1 p∗
i = 1, we obtain

p∗
i ≈ 1

N
. (53)

Unlike for the active random walk [see Eq. (20)], the
(approximated) steady state of the passive random walk is
the uniform distribution for any ψ(t) and network structure.
This is also consistent with the case when interevent times
obey the exponential distribution, for which we derived the
steady state in Sec. III A directly from the master equation.

C. Mean recurrence time

To evaluate the mean recurrence time for the passive random
walk, we denote by Ti←j |i the time at which a random walker
leaving node i returns to i through link (ji) for the first time.
The PDF of Ti←j |i is denoted by g(t ; i ← j |i). We also define
pi|i←j (t) as the probability that the random walker is located
at node i at time t , given that it arrived at i from j at time 0. It
should be noted that Bayes’ rule results in

pi|i(t) =
∑

j,(ji)∈E

pi|i←j (t)
pi←j (0)

pi(0)
. (54)

The PDF of the first recurrence time satisfies

pi|i(t) ≈ φi(t) +
∑

j,(ji)∈E

∫ t

0
g(t − t ′; i ← j |i)pi|i←j (t ′) dt ′.

(55)
Here, φi(t) denotes the probability that the walker resides at
node i for time longer than t and is given by

φi(t) =
∑

j,(ji)∈E

φi←j (t)
pi←j (0)

pi(0)
(56)

owing to Bayes’ rule. By converting Eq. (55) to the Laplace
space, we obtain

p̂i|i(s) ≈ φ̂i(s) +
∑

j,(ji)∈E

ĝ(s; i ← j |i)p̂i|i←j (s). (57)

To evaluate Eq. (57), we resort to a mean-field ansatz
given by p̂i|i←j (s) ≈ p̂i|i(s), where (ji) ∈ E. In other words,
we neglect from which node the walker returns to i. This

approximation may be accurate if the interevent times are
identically distributed for different links, which we assume
hereafter.

Under this approximation, Eq. (57) is reduced to

p̂i|i(s) ≈ φ̂i(s) +
∑

j,(ji)∈E

ĝ(s; i ← j |i)p̂i|i(s)

= φ̂i(s) + ĝ(s; i|i)p̂i|i(s). (58)

By following the same steps as in Eqs. (25)–(32), we obtain

〈Ti|i〉 ≈ 〈minj=1,...,di−1{τ,τ̃j }〉
p∗

i

. (59)

By substituting Eqs. (52) and (53) in Eq. (59), we obtain

〈Ti|i〉 ≈ N〈τ 〉
di

. (60)

It should be noted that the mean recurrence time is also
inversely proportional to the degree for the active random walk
[see Eq. (32)]. It should be also noted that 〈Ti|i〉 is independent
of ψ(t) for the passive random walk except for the factor 〈τ 〉,
but not for the active random walk.

V. EXAMPLES

To illustrate the theoretical results derived in Secs. III
and IV, we analyze examples in this section. We assume that
the interevent times are identically distributed for all links
according to ψ(t), which is either a power-law or Weibull
distribution.

A. Power-law distributed interevent times

Consider the case in which all interevent times follow a
power-law distribution given by

ψ(t) = (α − 1)(1 + t)−α, (61)

where α > 2, corresponding to the assumption 〈τ 〉 < ∞. We
plot the PDFs of the power law by the dotted line in Fig. 3.
In fact, many real data show α ≈ 1 or 1.5 [13–15], which

FIG. 3. (Color online) Three distributions of interevent times,
i.e., the exponential distribution given by ψ(t) = e−t (solid line), the
power-law distribution given by Eq. (61) with α = 3 (dotted line), and
the Weibull distribution given by Eq. (76) with m = 2 and λ = √

π/2
(dashed line).
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apparently contradicts our choice α > 2. Here for simplicity
we assume α > 2 to investigate the effect of long-tailed
distributions on the random walk on temporal networks.

For the active random walk, the PDF of the transition time
is calculated from the substitution of Eq. (61) in Eq. (3) as
follows:

f (t ; j ← i) = (α − 1)(1 + t)−αdi+di−1. (62)

The probability to make a transition from node i to an adjacent
node j [see Eq. (14)] is given by

(Fa)ji =
∫ ∞

0
f (t ; j ← i) dt = 1

di

. (63)

The mean time for which the random walker stays at node i

before moving to a neighbor [see Eq. (12)] is given by

〈
min

�;(i�)∈E
τ(i�)

〉
= 1

αdi − di − 1
. (64)

For the passive random walk, we substitute Eq. (61) in
Eq. (34) to obtain the PDF of the waiting time as follows:

ρ(t) = (α − 2)(1 + t)−α+1. (65)

It should be noted that the mean waiting time diverges if 2 <

α � 3. However, the following results are valid for all α > 2
for the following reason. The link walked through in the last
jump has a finite mean waiting time because of resetting. This
fact guarantees that the mean time to the next jump is always
finite. Therefore, the steady state and the mean recurrence
time safely exist. By substituting Eq. (65) in Eq. (35), we
obtain

f (t ; j ← i|i ← k) =
{

(α − 2)(1 + t)−αdi+2di−2 if j 	= k,

(α − 1)(1 + t)−αdi+2di−2 if j = k.

(66)
The approximate probability to make a transition from node i

to a neighbor j conditioned that the random walker reached
node i through link (ik) [see Eq. (41)] is given by

(Fp)(ij ),(ki) =
∫ ∞

0
f (t ; j ← i|i ← k) dt

=
{ α−2

αdi−2di+1 if j 	= k,

α−1
αdi−2di+1 if j = k.

(67)

To illustrate the difference between the active and passive
random walks, we consider the network composed of three
nodes shown in Figs. 1 and 2.

For the active random walk, Eq. (63) leads to

(Fa)(12),(21) = (Fa)(32)(23) = 1, (68)

(Fa)(21),(12) = (Fa)(21),(32) = (Fa)(23),(32) = (Fa)(23),(12) = 1
2 .

(69)

These transition probabilities are the same as those in the
case of identically distributed exponential interevent times. In

contrast, for the passive random walk, Eq. (67) leads to

(Fp)(12),(21) = (Fp)(23),(32) = 1, (70)

(Fp)(21),(12) = (Fp)(23),(32) = 1 − (Fp)(23),(12)

= 1 − (Fp)(21),(32) ≈ α − 1

2α − 3
. (71)

Because 2 < α < ∞, we obtain 0.5 < (Fp)(21),(12) =
(Fp)(23),(32) < 1. Therefore, the passive random walker
tends to travel on the link that the walker has used the last
time. In particular, when α = 2 + ε, with 0 < ε � 1, we
obtain (Fp)(21),(12) = (Fp)(23),(32) ≈ 1 − ε and (Fp)(23),(12) =
(Fp)(21),(32) ≈ ε. Therefore, a random walker starting at node
1, for example, will be trapped between nodes 1 and 2 for a
long time before transiting to node 3.

For the active random walk, the mean time to stay at node
i, i.e., Eq. (64), is reduced to

〈
min

�=1,...,di

τ�

〉
= 1

(α − 1)di − 1
, (72)

where τ� are i.i.d. copies of the interevent time. By substituting
Eq. (72) in Eq. (20), we obtain

p∗
a,i ∝ 1

α − 1 − 1
di

, (73)

where subscript “a” here and in the following corresponds to
the active random walk.

Equation (73) implies that the steady state is not uniform,
which is in contrast to the case of exponentially distributed
interevent times. In particular, p∗

a,i is large for nodes with small
degrees, which is opposite to the case of the discrete-time
simple random walk in undirected networks for which the
steady state is proportional to the node’s degree [3,32]. In
contrast, for the passive random walk, the steady state is the
uniform distribution [see Eq. (53)].

To test our theory, we carried out numerical simulations. We
set α = 3 and used the Barabási-Albert scale-free network [33]
with N = 50 nodes. The two parameters in the Barabási-Albert
model were set to m0 = m = 2. We used the same single
realization of the aggregate network for both active and passive
random walks. We calculated the steady state as the average
time for which the walker spent on each node between t = 103

and t = 108. The choice t = 103 is to exclude the transient.
We initially placed the walker at one of the two nodes initially
created in the Barabási-Albert algorithm, each with probability
1/2.

The passive random walk was simulated as follows. For
each link, we stored the sum of realized interevent times. As
soon as the random walker arrived at a node, a new interevent
time was drawn for the link just used by the walker. For
each of the remaining links incident to the node, interevent
times were drawn until the sum of realized interevent times
exceeded the time of arrival of the random walker. Then, we
selected the link e with the smallest sum of realized interevent
times. Finally, the random walker jumped to a new node
through e. This procedure was repeated until the final time was
reached.
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FIG. 4. (Color online) Numerical results for the active and pas-
sive random walk on a scale-free network with N = 50 nodes
generated by the Barabási-Albert model [33]. The interevent time is
assumed to obey the power-law distribution with exponent α = 3 for
all links. (a) Steady state of the active (circles) and passive (triangles)
random walks. (b) Mean time to return to an initial node for the
active and passive random walks. The results for the case in which
the interevent time obeys the exponential distribution are omitted
because they are indistinguishable from the results for the passive
random walk (triangles). The lines represent the theoretical estimates.
The nodes are sorted in ascending order of the degree.

The numerically obtained steady state probability of each
node is shown in Fig. 4(a) for the active (circles) and passive
(triangles) random walks. The nodes on the horizontal axis are
shown in the ascending order of the degree. The numerical
results are accurately predicted by the theory (lines). In
particular, the approximations made for analyzing the passive
random walk do not cause a notable discrepancy between the
numerical and theoretical results.

Next, we examine the mean recurrence time. For the active
random walk, we substitute Eqs. (20) and (64) in Eq. (32) to
obtain

〈Ta,i|i〉 = 1

di

N∑
j=1

(
α − 1 − 1

dj

)−1

. (74)

For the passive random walk, by substituting 〈τ 〉 = (α − 2)−1

in Eq. (60), we obtain

〈Tp,i|i〉 ≈ N

(α − 2)di

, (75)

where subscript “p” corresponds to the passive random walk.

In the numerical simulations of the passive random walk,
we assume that the walker arrived at the starting node i from
each neighbor of i with the same probability at t = 0. To
mimic the steady state of the stochastic temporal network, we
assumed that the initial interevent time obeys the waiting time
distribution [see Eq. (34)] for all links except for link (ji) from
which the random walker arrived at t = 0. The initial interevent
time of link (ji) is drawn from ψ(t). For each starting node i,
we averaged the recurrence time over 105 realizations of the
random walk.

Numerically obtained mean recurrence times on the same
scale-free network as that used in Fig. 4(a) is shown in
Fig. 4(b). The theory (lines) accurately matches the numerical
results (symbols). We also confirmed that the numerical results
when ψ(t) is the exponential distribution with the same mean
(i.e., 〈τ 〉 = 1; shown in Fig. 3 by the solid line) completely
overlap with those for the passive random walk when ψ(t)
is the power-law distribution [hence not shown in Fig. 4(b)].
Figure 4(b) also indicates that, for each node, the active random
walk realizes a smaller mean recurrence time than the passive
random walk does.

B. Weibull distributed interevent times

For the power-law distribution of interevent times, the
steady state probability of a node decreases with the degree
for the active random walk, and the mean recurrence time at
each node is larger for the passive than active random walk
(Sec. V A). However, these results are not universal.

To show this, we consider the case in which the interevent
time obeys the Weibull distribution given by

ψ(t) = mλmtm−1e−(λt)m, (76)

where m(0 < m < ∞) and λ(> 0) are parameters. The
Weibull distribution with m = 2 and λ = √

π/2, which yields
〈τ 〉 = 1, is shown by the dashed line in Fig. 3. It should be
noted that the tail of the distribution is shorter than that of the
exponential distribution with the same mean (solid line).

We start by illustrating the dynamics of the passive random
walk on the three-node network. Refer to Fig. 1 for a schematic.
By combining ρ(t) = e−(λt)m with Eq. (35), we obtain

(Fp)(21),(12) = 1 −
∫ ∞

0
e−2(λt)mdt = 1 − 2− 1

m (77)

independent of the λ value. For m = 1, the interevent times are
exponentially distributed such that (Fp)(21),(12) = (Fp)(23),(32) =
1/2. For 0 < m < 1, we obtain 1/2 < (Fp)(21),(12) =
(Fp)(23),(32) < 1 such that the random walker tends to alternate
between two nodes, which is similar to the dynamics when
ψ(t) is the power-law distribution (Sec. V A). For m > 1,
we obtain 0 < (Fp)(21),(12) = (Fp)(23),(32) < 1/2 such that the
random walker tends to avoid traveling on the same link in
consecutive transitions. For the rest of this section, we focus
on the case m = 2.

The numerical results for the Weibull distribution with
m = 2, λ = √

π/2, and the same scale-free network as that
used in the previous section are shown in Fig. 5. The steady
state probability for the active random walk increases with
the degree [circles in Fig. 5(a)]. In fact, a direct calculation of
Eq. (20) for the Weibull distribution yields p∗

i ∝ √
di , as shown
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FIG. 5. (Color online) Numerical results for the active (circles)
and passive (triangles) random walk when the interevent time obeys
the Weibull distribution with m = 2 and λ = √

π/2. We used the
same realization of the scale-free network as in Fig. 4. (a) Steady
state. (b) Mean recurrence time. The lines represent the theory. The
nodes are sorted in ascending order of the degree.

by the lines overlapping with the circles in Fig. 5(a). This
result is in contrast to the case of the power-law distribution
of interevent times, for which p∗

i decreases with di [see
Eq. (73)]. For the passive random walk, the steady state obeys
the uniform distribution (triangles), which is consistent with
the theory.

The mean recurrence time under the Weibull distribution
of interevent times is shown in Fig. 5(b). The results for the
passive random walk (triangles) are indistinguishable from
those for the power-law and exponential distributions, which
is consistent with the theory. We also find that, for any node,
the mean recurrence time is larger for the active than passive
random walk. This result is opposite to that for the power-law
distribution of interevent times.

VI. CONCLUSIONS

We studied two models of random walks on stochastic
temporal networks. Our main findings are summarized as
follows. First, the steady state for the passive random walk
with identically distributed interevent times on links is uniform
for any network and distribution of interevent times. Second,
for the active random walk, the steady state probability
decreases and increases with the degree for the power-law and
Weibull distribution of interevent times, respectively. Third,
the mean recurrence time for both types of walks is inversely

proportional to the node’s degree. Fourth, the mean recurrence
time for the passive random walk does not depend on the
distribution of interevent times. Fifth, the active random walk
produces smaller mean recurrence times for each node than
the passive walk does when the interevent time obeys the
power-law distribution. In contrast, the mean recurrence times
are larger for the active random walk than the passive random
walk when the interevent time obeys the Weibull distribution.

The present result that the mean recurrence time is inversely
proportional to the node’s degree is consistent with that
in Ref. [17]. In particular, both studies conclude that the
distribution of interevent times does not affect the mean
recurrence time (squares and diamonds in Fig. 7 in Ref. [17]).
We reached this conclusion by explicit derivation of the mean
recurrence time. In contrast, we consider that the strength
of Ref. [17] in this respect lies in numerically showing the
universality of this result across different data sets. It should
be noted that a discrete-time simple random walk on a different
temporal network model yields different results; the mean
recurrence time decreases but is not inversely proportional
to the degree [21].

The passive random model induces a correlated random
walk. Interesting connections of the present study may be made
to seminal work on correlated random walk on lattices [34–36]
and to recent work modeling empirical pathways on networks
by second-order Markov processes [19,37,38]. Pursuing con-
nection to anomalous diffusion on lattices [39] may be also
interesting. It may be also interesting to explore the case in
which the mean interevent time diverges, which would make
the walker to linger at a node for extremely long time.
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APPENDIX: DERIVATION OF EQ. (10)

By substituting Eq. (4) in Eq. (1), we obtain

d

dt
pi(t) = qi(t)−

∑
j ;(ij )∈E

∫ t

0
f (t − t ′; j ← i)qi(t

′) dt ′ (A1)

for any t > 0 and 1 � i � N . By integrating Eq. (A1), we
obtain

pi(t) − pi(0) =
∫ t

0

⎡
⎣qi(t

′) −
∑

j ;(ij )∈E

∫ t ′

0
f (t ′ − t ′′; j ← i)

× qi(t
′′) dt ′′

⎤
⎦ dt ′. (A2)
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By applying the Leibniz integral rule, i.e.,

d

dt

∫ β(t)

α(t)
f (t ; t ′)dt ′ = f (t ; β(t) )

d

dt
β(t) − f (t ; α(t) )

d

dt
α(t)

+
∫ β(t)

α(t)

d

dt
f (t ; t ′) dt ′, (A3)

by setting α(t) = 0, β(t) = t , and f (t ; t ′) = φi(t − t ′)qi(t ′),
we obtain

d

dt

∫ t

0
φi(t − t ′)qi(t

′) dt ′

= φi(0)qi(t) +
∫ t

0

d

dt
φi(t − t ′)qi(t

′) dt ′. (A4)

To evaluate the second term on the right-hand side of Eq. (A4),
we use the definition of φi(t) [see Eq. (9)] to obtain

d

dt
φi(t − t ′) = − d

dt

∫ ∞

t−t ′

∑
j ;(ij )∈E

f (t ′′; j ← i) dt ′′

= −
∑

j ;(ij )∈E

f (t − t ′; j ← i). (A5)

By using φi(0) = 1 and substituting Eq. (A5) in Eq. (A4), we
obtain

d

dt

∫ t

0
φi(t − t ′)qi(t

′) dt ′

= qi(t) −
∑

j ;(ij )∈E

∫ t

0
f (t − t ′; j ← i)qi(t

′) dt ′. (A6)

By substituting Eq. (A6) in Eq. (A2), we obtain

pi(t) − pi(0) =
∫ t

0

d

dt ′

∫ t ′

0
φi(t

′ − t ′′)qi(t
′′) dt ′′dt ′. (A7)

To evaluate the right-hand side of Eq. (A7), we have to evaluate

lim
t→0

∫ t

0
φi(t − t ′)qi(t

′) dt ′. (A8)

This task needs carefulness because qi(t) behaves like
pi(0)δ(t) around t = 0. By using the initial value theorem,
we obtain

lim
t→0

∫ t

0
φi(t − t ′)qi(t

′) dt ′ = lim
s→∞ sφ̂i(s)q̂i(s). (A9)

Because lims→∞ sφ̂i(s) = φi(0) = 1, we obtain

lim
s→∞ sφ̂i(s)q̂i(s) = lim

s→∞ q̂i(s) = lim
s→∞

∑
j ;(ji)∈E

q̂i←j (s), (A10)

where the last equality follows from Eq. (5). The Laplace
transform of Eq. (4) yields

lim
s→∞

∑
j ;(ji)∈E

q̂i←j (s) = lim
s→∞

∑
j ;(ji)∈E

f̂ (s; i ← j )q̂j (s) + pi(0).

(A11)
Using the dominated convergence theorem, we obtain

lim
s→∞ f̂ (s; i ← j ) = lim

s→∞

∫ ∞

0
f (t ; i ← j )e−ts dt

=
∫ ∞

0
lim
s→∞ f (t ; i ← j )e−ts dt = 0.

(A12)

The use of the dominated convergence theorem is justified
because

f (t ; i ← j )e−ts < f (t ; i ← j ) (A13)

and ∫ ∞

0
f (t ; i ← j ) dt < ∞. (A14)

By combining Eqs. (A9), (A10), (A11), and (A12), we obtain

lim
t→0

∫ t

0
φi(t − t ′)qi(t

′) dt ′ = pi(0). (A15)

Therefore, by evaluating the right-hand side of Eq. (A7), we
obtain

pi(t) − pi(0) =
∫ t

0
φi(t − t ′)qi(t

′) dt − pi(0), (A16)

which is equivalent to Eq. (10).
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