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Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The
spreading of infections on such temporal networks can differ dramatically from spreading on static
networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has
at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics
on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher
epidemic threshold) when the node’s concurrency is low, but can also enhance epidemics when the
concurrency is high. We analytically determine different phases of this concurrency-induced transition, and
confirm our results with numerical simulations.
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Introduction.—Social contact networks—on which
infectious diseases occur in humans and animals or viral
information spreads online and offline—are mostly
dynamic. Switching of partners and the (usually non-
Markovian) activity of individuals, for example, shape
network dynamics on such temporal networks [1–3]. A
better understanding of epidemic dynamics on temporal
networks is needed to help improve predictions of, and
interventions in, emergent infectious diseases, to design
vaccination strategies, and to identify viral marketing
opportunities. This is particularly so because what we
know about epidemic processes on static networks [4–7]
is only valid when the time scales of the network dynamics
and of the infectious processes are well separated. In fact,
temporal properties of networks, such as long-tailed dis-
tributions of intercontact times, temporal and cross-edge
correlation in intercontact times, and entries and exits of
nodes, considerably alter how infections spread in a net-
work [1–3,8,9].
In the present study, we focus on a relatively neglected

component of temporal networks, i.e., the number of
concurrent contacts that a node has. Even if two temporal
networks are the samewhen aggregated over a time horizon,
they may be different as temporal networks due to different
levels of concurrency. Concurrency is a longstanding con-
cept in epidemiology, in particular in the context of
monogamy or polygamy affecting sexually transmitted
infections [10–12]. Modeling studies to date largely agree
that a level of high concurrency (e.g., polygamy as opposed
to monogamy) enhances epidemic spreading in a popula-
tion. However, this finding, while intuitive, lacks theoretical
underpinning. First, some models assume that the mean
degree, or equivalently the average contact rate, of nodes
increases as the concurrency increases [13–16]. In these
cases, the observed enhancement in epidemic spreading is
an obvious outcomeof a higher density of edges rather than a
high concurrency. Second, other models that vary the level

of concurrency while preserving the mean degree are
numerical [10,11,17,18]. In the present study, we use the
analytically tractable activity-driven model of temporal
networks [19–23] to explicitly modulate the size of the
concurrently active network with the structure of the
aggregate network fixed. With this machinery, we carefully
treat extinction effects, derive an analytically tractable
matrix equation using a probability generating function
for dynamical networks, and reveal nonmonotonic effects of
link concurrency on spreading dynamics. We show that the
dynamics of networks can either enhance or suppress
infection, depending on the amount of concurrency that
individual nodes have. Note that analysis of epidemic
processes driven by discrete pairwise contact events, which
is a popular approach [1–3,9,23–27], does not address the
problem of concurrency because we must be able to control
the number of simultaneously active links possessed by a
node in order to examine the role of concurrency without
confounding with other aspects.
Model.—We consider the following continuous-time

susceptible-infected-susceptible (SIS) model on a dis-
crete-time variant of activity-driven networks, which is a
generative model of temporal networks [19–23]. The num-
ber of nodes is denoted by N. Each node i ð1 ≤ i ≤ NÞ is
assigned an activity potential ai, drawn from a probability
density FðaÞ ð0 < a ≤ 1Þ. Activity potential ai is the
probability with which node i is activated in a window of
constant duration τ. If activated, node i createsm undirected
links each of which connects to a randomly selected node
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FIG. 1. Schematic of an activity-driven network with m ¼ 3.
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(Fig. 1). If two nodes are activated and send edges to each
other, we only create one edge between them. However, for
large N and relatively small ai, such events rarely occur.
After a fixed time τ, all edges are discarded. Then, in the next
time window, each node is again activated with probability
ai, independently of the activity in the previous time
window, and connects to randomly selected nodes by m
undirected links. We repeat this procedure. Therefore, the
network changes from one timewindow to another and is an
example of a switching network [28–31]. A large τ implies
that network dynamics are slow compared to epidemic
dynamics. In the limit of τ → 0, the network blinks
infinitesimally fast, enabling the dynamical process to be
approximated on a time-averaged static network, as in [30].
For the SIS dynamics, each node takes either the

susceptible or infected state. At any time, each susceptible
node contracts infection at rate β per infected neighboring
node. Each infected node recovers at rate μ irrespectively of
the neighbors’ states. Changing τ to cτ ðc > 0Þ is equivalent
to changing β and μ to β=c and μ=c, respectively, while
leaving τ unchanged. Therefore,we setμ ¼ 1without loss of
generality.
Analysis.—We calculate the epidemic threshold as fol-

lows. First, we formulate SIS dynamics near the epidemic
threshold on a static star graph, which is the building block of
the activity-driven model, while explicitly considering
extinction effects. Second, we convert the obtained set of
linear difference equations into a tractablemathematical form
with the use of a probability generating function of an activity
distribution. Third, the epidemic threshold is obtained from
an implicit function. For the sake of the analysis, we assume
that star graphs generated by an activated node,whichwe call
the hub, are disjoint from each other. Because a star graph
with hub node i overlaps with another star graph with
probability ≈m

P
j≠iajðmþ 1Þ=N ∝ m2hai, where hai≡R

daFðaÞa is the mean activity potential, we impose
m2hai ≪ 1. (However, our method works better than the
so-called individual-based approximation even when
m2hai ¼ 0.5, as shown in the Supplemental Material
[32].) We denote by ρða; tÞ the probability that a node
with activity a is infected at time t. The fraction of infected
nodes in the entire network at time t is given by
hρðtÞi≡ R

daFðaÞρða; tÞ. Let c1 be the probability with
which the hub in an isolated star graph is infected at time
tþ τ, when the hub is the only infected node at time t and the
network has switched to a new configuration right at time t.
Let c2 be the probability with which the hub is infected at
tþ τ when only a single leaf node is infected at t. The
probability that a hubwith activity potentiala is infected after
the duration τ of the star graph, denoted by ρ1, is given by

ρ1ða; tþ τÞ ¼ c1ρða; tÞ þ c2mhρðtÞi: ð1Þ
In deriving Eq. (1), we considered the situation near the
epidemic threshold such that at most one node is infected in
the star graph at time t [and hence ρða; tÞ; hρðtÞi ≪ 1]. The

probability that a leaf with activity potential a that has a hub
neighbor with activity potential a0 is infected after time τ is
analogously given by

ρ2ða; a0; tþ τÞ ¼ c3ρða; tÞ þ c4ρða0; tÞ
þ c5ðm − 1ÞhρðtÞi; ð2Þ

where c3, c4, and c5 are the probabilities with which a leaf
nodewith activity potentiala is infected after duration τwhen
only that leaf node, the hub, and a different leaf node is
infected at time t, respectively. We derive formulas for ci
ð1 ≤ i ≤ 5Þ in the Supplemental Material [32]. The proba-
bility that an isolated nodewith activity potentiala is infected
after time τ is given by e−τρða; tÞ. By combining these
contributions, we obtain

ρða; tþ τÞ ¼ aρ1ða; tþ τÞ þ
Z

da0Fða0Þma0ρ2ða;a0; tþ τÞ

þ ð1− a−mhaiÞe−τρða; tÞ: ð3Þ
To analyze Eq. (3) further, we take a generating function

approach. With this approach, one trades a probability
distribution for a probability generating function whose
derivatives provide us with useful information about the
distribution such as its moments. Furthermore, it often
makes analysis easier, in particular linear analysis. By
multiplying Eq. (3) by za and averaging over a, we obtain

Θðz; tþ τÞ ¼ c01Θð1Þðz; tÞ þ c02Θð1; tÞgð1ÞðzÞ þ c03Θðz; tÞ
þ ½c04Θð1Þð1; tÞ þ c05Θð1; tÞ�gðzÞ; ð4Þ

where c01≡c1−e−τ, c02 ≡mc2, c03 ≡ e−τ þmhaiðc3 − e−τÞ,
c04 ≡mc4, c05 ≡mðm − 1Þhaic5, gðzÞ≡ R

daFðaÞza is
the probability generating function of a, Θðz; tÞ≡R
daFðaÞρða; tÞza, and throughout the paper the super-

script (n) represents the nth derivative with respect to ln z.
Although Eq. (3) is an infinite dimensional system of linear
difference equations, Eq. (4) is a single difference equation
of Θðz; tÞ and its derivative [35].
We expand ρða; tÞ as a Maclaurin series as follows:

ρða; tÞ ¼
X∞
n¼1

wnðtÞan−1: ð5Þ

Using this polynomial basis representation (the conver-
gence is proven in the Supplemental Material [32]), we can
consider the differentiations in Eq. (4) [i.e., Θð1Þðz; tÞ and
gð1ÞðzÞ] as an exchange of bases and convert Eq. (4) into a
tractable matrix form. Let p0 be the fraction of initially
infected nodes, which are selected uniformly at random,
independently of a. We represent the initial condition as
wðt ¼ 0Þ≡ ðw1ð0Þ; w2ð0Þ;…Þ⊤ ¼ ðp0; 0; 0;…Þ⊤.
Epidemic dynamics near the epidemic threshold obey linear
dynamics given by

wðtþ τÞ ¼ TðτÞwðtÞ: ð6Þ
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By substituting Θðz; tÞ ¼ P∞
n¼1 wnðtÞgðn−1ÞðzÞ and gðn−1Þð1Þ ¼ han−1i in Eq. (4), we obtain

T ¼

0
BBBBBBBBB@

c03 þ haic04 þ c05 ha2ic04 þ haic05 ha3ic04 þ ha2ic05 ha4ic04 þ ha3ic05 ha5ic04 þ ha4ic05 � � �
c01 þ c02 haic02 þ c03 ha2ic02 ha3ic02 ha4ic02 � � �

0 c01 c03 0 0 � � �
0 0 c01 c03 0 � � �
0 0 0 c01 c03 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCA
: ð7Þ

A positive prevalence hρðtÞi (i.e., a positive fraction of
infected nodes in the equilibrium state) occurs only if the
largest eigenvalue of TðτÞ exceeds 1, because in this
situation the probability of being infected grows in time,
at least in the linear regime. Therefore, we get the following
implicit function for the epidemic threshold, denoted by βc:

fðτ; βcÞ≡ ð1 − rÞð1 − sÞ − ð1þ qÞu
SðqÞ

− qr − qsþ qrs − q2u − rs ¼ 0; ð8Þ
where SðqÞ≡P∞

n¼0ðhanþ2i=hainþ2Þqn ¼ð1=hai2Þfhða2Þ=
½1− ða=haiÞq�ig, q≡ haic01=ð1 − c03Þ, r≡ haic02=ð1 − c03Þ,
s≡ haic04=ð1 − c03Þ, and u≡ c05=ð1 − c03Þ (see Supplemen-
tal Material [32] for the derivation). Note that f is a
function of βð¼ βcÞ through q, r, s, and u, which are
functions of β. In general, we obtain βc by numerically
solving Eq. (8), but some special cases can be determined
analytically.
In the limit τ → 0, Eq. (8) gives βc ¼ ½mðhaiþffiffiffiffiffiffiffiffiffi
ha2i

p
Þ�−1, which coincides with the epidemic threshold

for the activity-driven model derived in the previous studies
[19,22]. In fact, this βc value is the epidemic threshold for
the aggregate (and hence static) network, whose adjacency
matrix is given by A�

ij ≈mðai þ ajÞ=N [3,31], as demon-
strated in Fig. S1 [32].
For general τ, if all nodes have the same activity potential

a, and if m ¼ 1, we obtain βc as the solution of the
following implicit equation:

2ae½ðβc−1Þτ=2�
�
cosh

�
κcτ

2

�
þ 1þ 3βc

κc
sinh

�
−κcτ
2

��

− eτ þ 1 − 2a ¼ 0; ð9Þ
where κc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2c þ 6βc þ 1

p
.

The theoretical estimate of the epidemic threshold
[Eq. (8); we use Eq. (9) in the case of m ¼ 1] is shown
by the solid lines in Figs. 2(a) and 2(b). It is compared with
numerically calculated prevalence values for various τ and
β values shown in different colors. Equations (8) and (9)
describe the numerical results fairly well. Whenm ¼ 1, the
epidemic threshold increases with τ and diverges at τ ≈ 0.1
[Fig. 2(a)]. Furthermore, slower network dynamics (i.e.,

larger values of τ) reduce the prevalence for all values of β.
In contrast, when m ¼ 10, the epidemic threshold
decreases and then increases as τ increases [Fig. 2(b)].
The network dynamics (i.e., finite τ) impact epidemic
dynamics in a qualitatively different manner depending
on m, i.e., the number of concurrent neighbors that a hub
has. Note that the estimate of βc by the individual-based
approximation ([31], see Supplemental Material [32] for
the derivation), which may be justified when m ≫ 1, is
consistent with the numerical results and our theoretical
results only at small τ [a dashed line in Fig. 2(b)].
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FIG. 2. Epidemic threshold and the numerically-simulated
prevalence when m ¼ 1 (a),(c) and m ¼ 10 (b),(d). In (a)
and (b), all nodes have the same activity potential value a. The
solid lines represent the analytical estimate of the epidemic
threshold [Eq. (8); we plot Eq. (9) instead in (a)]. The dashed
lines represent the epidemic threshold obtained from the
individual-based approximation (Supplemental Material [32]).
The color indicates the prevalence. In (c) and (d), the activity
potential (ϵ ≤ ai ≤ 0.9, 1 ≤ i ≤ N) obeys a power-law distri-
bution with exponent 3. In (a)–(d), we set N ¼ 2000 and adjust
the values of a and ϵ such that the mean degree is the same
(hki ¼ 0.1) in the four cases. We simulate the stochastic SIS
dynamics using the quasistationary state method [36], as in
[31], and calculate the prevalence averaged over 100 realiza-
tions after discarding the first 15 000 time steps. We set the
step size Δt ¼ 0.002. Qualitatively similar results are obtained
for the variant of the activity-driven model with a reinforcement
mechanism of link creation [37] (Fig. S3 [32]).
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Qualitatively similar results are found, when the activity
potential a is power-law distributed [Figs. 2(c) and 2(d)].
To illuminate the qualitatively different behaviors of the

epidemic threshold as τ increases, we determine a phase
diagram for the epidemic threshold. We focus our analysis
on the case in which all nodes share the activity potential
value a, noting that qualitatively similar results are
also found for power-law distributed activity potentials
[Fig. 3(b)]. We calculate the two boundaries partitioning
different phases as follows. First, we observe that the
epidemic threshold diverges at τ ¼ τ�. In the limit β → ∞,
infection starting from a single infected node in a star graph
immediately spreads to the entire star graph, leading to
ci → 1 ð1 ≤ i ≤ 5Þ. By substituting ci → 1 in Eq. (8), we
obtain fðτ�; βc → ∞Þ ¼ 0, where

τ� ¼ ln
1 − ð1þmÞa
1 − ð1þmÞ2a : ð10Þ

When τ > τ�, infection always dies out even if the infection
rate is infinitely large. This is because, in a finite network,
infection always dies out after a sufficiently long time due
to stochasticity [38–40]. Second, although βc eventually
diverges as τ increases, there may exist τc such that βc at
τ < τc is smaller than the βc value at τ ¼ 0. Motivated by
the comparison between the behavior of βc at m ¼ 1
and m ¼ 10 (Fig. 2), we postulate that τc (> 0) exists
only for m > mc. Then, we obtain dβc=dτ ¼ 0 at
ðτ; mÞ ¼ ð0; mcÞ. The derivative of Eq. (8) gives ∂f=∂τþ
ð∂f=∂βcÞðdβc=dτÞ ¼ 0. Because dβc=dτ ¼ 0 at ðτ; mÞ ¼
ð0; mcÞ, we obtain ∂f=∂τ ¼ 0, which leads to

mc ¼
3

1 − 4a
: ð11Þ

When m < mc, network dynamics (i.e., finite τ) always
reduce the prevalence for any τ [Figs. 2(a) and 2(c)]. When
m > mc, a small τ raises the prevalence as compared to

τ ¼ 0 (i.e., static network) but a larger τ reduces the
prevalence [Figs. 2(b) and 2(d)].
The phase diagram based on Eqs. (10) and (11) is shown

in Fig. 3(a). The βc values numerically calculated by
solving Eq. (8) are also shown in the figure. It should
be noted that the parameter values are normalized such that
βc has the same value for all m at τ ¼ 0. We find that the
dynamics of the network may either increase or decrease
the prevalence, depending on the number of connections
that a node can simultaneously have, extending the results
shown in Fig. 2.
These results are not specific to the activity-drivenmodel.

The phase diagram is qualitatively similar for randomly
distributed m (Fig. S4 [32]), for different distributions of
activity potentials (Fig. S5 [32]), and for a different model in
which an activated node induces a clique instead of a star
(Fig. S6 [32]), modeling a group conversation event as some
temporal network models do [41–43].
Discussion.—Our analytical method shows that the

presence of network dynamics boosts the prevalence
(and decreases the epidemic threshold βc) when the
concurrency m is large and suppresses the prevalence
(and increases βc) when m is small, for a range of values
of the network dynamic time scale τ. This result lends
theoretical support to previous claims that concurrency
boosts epidemic spreading [10,11,13–19,44]. The result
may sound unsurprising because a large m value implies
that there exists a large connected component at any given
time. However, our finding is not trivial because a large
component consumes many edges such that other parts of
the network at the same time or the network at other times
would be more sparsely connected as compared to the case
of a smallm. We confirmed that qualitatively similar results
are found when the activity potentials were constructed
from two empirical social contact networks (Fig. S7 [32]).
Our results confirm that a monogamous sexual relationship
or a small group of people chatting face to face, as opposed
to polygamous relationships or large groups of conversa-
tions, hinders epidemic spreading, where we compare like
with like by constraining the aggregate (static) network to
be the same in all cases. For general temporal networks,
immunization strategies that decrease concurrency (e.g.,
discouraging polygamy) may be efficient. Restricting the
size of the concurrent connected component (e.g., size of a
conversation group) may also be a practical strategy.
Another important contribution of the present study is

the observation that infection dies out for a sufficiently
large τ, regardless of the level of concurrency. As shown in
Figs. 3 and S6 [32], the transition to the “die out” phase
occurs at values of τ that correspond to network dynamics
and epidemic dynamics having comparable time scales.
This is a stochastic effect and cannot be captured by
existing approaches to epidemic processes on temporal
networks that neglect stochastic dying out, such as differ-
ential equation systems for pair formulation-dissolution
models [11,15–18] and individual-based approximations
[31,45,46]. Our analysis methods explicitly consider such
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FIG. 3. Phase diagrams for the epidemic threshold, βc, when
the activity potential is (a) equal to a for all nodes, or (b) obeys a
power-law distribution with exponent 3 (ϵ ≤ ai ≤ 0.9). We set
hki ¼ 0.1 at m ¼ 1 and adjust the value of a and ϵ such that βc
takes the same value for all m at τ ¼ 0. In the “die out” phase,
infection eventually dies out for any finite β. In the “suppressed”
phase, βc is larger than the βc value at τ ¼ 0. In the “enhanced”
phase, βc is smaller than the βc value at τ ¼ 0. The solid and
dashed lines represent τ� [Eq. (10)] and τc, respectively. The color
bar indicates the βc values. In the gray regions, βc > 100.
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stochastic effects, and are therefore expected to be useful
beyond the activity-driven model (or the clique-based
temporal networks analyzed in the Supplemental
Material [32]) and the SIS model.
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PREVALENCE ON THE AGGREGATE
NETWORK
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FIG. S1. Prevalence on the aggregate (hence static) network
whose adjacency matrix is given (in the limit N → ∞) by
A∗

ij = m(ai + aj)/N [1, 2]. The lines represent the numerical
results for the delta function (i.e., all nodes have same activity
potential) and power-law activity distributions. The arrows

indicate βc =
[
m
(
〈a〉+

√
〈a2〉

)]−1

. We set m = 5 and

〈a〉 = 0.01.

WHEN THE LOW-ACTIVITY ASSUMPTION IS
VIOLATED

Here we consider the situation in which the low-
activity assumption m2〈a〉 � 1 is violated. When
m� N , the expected number of star graphs that a star
graph overlaps with is given by

p = N〈a〉
[
1−

(
1− m+ 1

N − 1

)m]
≈ m(m+ 1)〈a〉. (S1)

If p � 1 is violated, a star graph would overlap with
others such that the actual concurrency is larger than
m. In the extreme case of p ≥ 1, almost all star graphs
overlap with each other such that the concurrency is not
sensitive to m. In this situation, our results overestimate
the epidemic threshold because our analysis does not take
into account infections across different star graphs. If
p ≥ 1, the individual-based approximation describes the
numerical results more accurately than our method does
(Figs. S2(c) and S2(d)). However, even at a moderately
large value of p (= 0.5), our method is more accurate
than the individual-based approximation (Figs. S2 (a)
and S2(b)).
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FIG. S2. Epidemic threshold and numerically calculated
prevalence when the low-activity assumption is violated. We
set m = 1 in (a) and (c), m = 10 in (b) and (d), p = 0.5 in
(a) and (b), and p = 1.5 in (c) and (d). The solid and dashed
lines represent the epidemic threshold obtained from Eq. (8)
and that obtained from the individual-based approximation,
respectively. All nodes are assumed to have the same activity
potential a = 0.25 in (a), a = 0.0045 in (b), a = 0.75 in (c),
and a = 0.0136 in (d). We calculated the prevalence averaged
over 100 simulations after discarding the first 15000 time steps
of each simulation. We set N = 1000 and ∆t = 0.002.

DERIVATION OF c1, c2, c3, c4, AND c5

We consider SIS dynamics on a star graph with m
leaves and derive c1, c2, c3, c4, and c5. Let us denote
the state of the star graph by {x, y, z} (x, y ∈ {S, I}, 0 ≤
z ≤ m− 1), where x and y are the states of the hub and
a specific leaf node, respectively, and z is the number of
infected nodes in the other m − 1 leaf nodes. Although
a general network with m+ 1 nodes allows 2m+1 states,
using this notation, we can describe SIS dynamics on a
star graph by a continuous-time Markov process with 4m
states [3].

We denote the transition rate matrix of the Markov
process by M . Its element M{x′,y′,z′},{x,y,z} is equal to
the rate of transition from {x, y, z} to {x′, y′, z′}. The
diagonal elements are given by

M{x,y,z},{x,y,z} = −
∑

{x′,y′,z′}6={x,y,z}

M{x′,y′,z′},{x,y,z}.

(S2)
The rates of the recovery events are given by

M{S,y,z},{I,y,z} =1, (S3)

M{x,S,z},{x,I,z} =1, (S4)

M{x,y,z−1},{x,y,z} =z (z ≥ 1). (S5)
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The rates of the infection events are given by

M{I,S,z},{S,S,z} = zβ, (S6)

M{I,I,z},{S,I,z} = (z + 1)β, (S7)

M{I,I,z},{I,S,z} = β, (S8)

M{I,y,z+1},{I,y,z} =(m− 1− z)β (z ≤ m− 2). (S9)

The other elements of M are equal to 0. Let p{x,y,z}(t)
be the probability for a star graph to be in state {x, y, z}
at time t. Because

ṗ(t) = Mp(t), (S10)

where p(t) is the 4m-dimensional column vector whose
elements are p{x,y,z}(t), we obtain

p(t) = exp(M t)p(0). (S11)

Note that c1 and c2 are the probabilities with which x = I
at time τ , when the initial state is {I, S, 0} and {S, I, 0},
respectively, and that c3, c4, and c5 are the probabilities
that y = I at time τ , when the initial state is {S, I, 0},
{I, S, 0}, and {S, S, 1}, respectively. Therefore, we ob-
tain

c1
c2
c3
c4
c5

 =



∑
y,z [exp(Mτ)]{I,y,z},{I,S,0}∑
y,z [exp(Mτ)]{I,y,z},{S,I,0}∑
x,z [exp(Mτ)]{x,I,z},{S,I,0}∑
x,z [exp(Mτ)]{x,I,z},{I,S,0}∑
x,z [exp(Mτ)]{x,I,z},{S,S,1}

 . (S12)

When m = 1, Eq. (S12) yields

c1 = c3 =

e−τ

2

[
e−βτ + e−

1+β
2 τ

(
cosh

κτ

2
+

1 + 3β

κ
sinh

κτ

2

)]
,

(S13)

c2 = c4 =

e−τ

2

[
−e−βτ + e−

1+β
2 τ

(
cosh

κτ

2
+

1 + 3β

κ
sinh

κτ

2

)]
,

(S14)

where κ =
√
β2 + 6β + 1, and c5 is not defined.

When m � 1, we can apply an individual-based ap-
proximation [1, 4, 5]. We assume that the state of each
node is statistically independent of each other, i.e.,

p{x,y,z} ≈ P (x)P (y)P (z), (S15)

where P (x), for example, is the probability that the hub
takes state x. We have suppressed t in Eq. (S15). Un-
der the individual-based approximation, x and y obey
Bernoulli distributions with parameters pMF

1 and pMF
2 ,

respectively, and z obeys a binomial distribution with pa-
rameters m−1 and pMF

3 , where pMF ≡ (pMF
1 , pMF

2 , pMF
3 )>

is given by

pMF =

P (x = I)
P (y = I)
〈z〉
m−1

 =


∑
y,z p{I,y,z}∑
x,z p{x,I,z}

1
m−1

∑
x,y,z zp{x,y,z}

 .

(S16)

By substituting Eq. (S10) in the time derivative of
Eq. (S16), we obtain

ṗMF =

−pMF
1 + βpMF

2 + (m− 1)βpMF
3

βpMF
1 − pMF

2

βpMF
1 (1− pMF

3 )− pMF
3

 . (S17)

If pMF
3 � 1, pMF obeys linear dynamics given by

ṗMF ≈MMFpMF (S18)

where

MMF =

−1 β (m− 1)β
β −1 0
β 0 −1

 . (S19)

In a similar fashion to the derivation of Eq. (S12), we
obtain 

c1
c2
c3
c4
c5

 ≈


[exp(MMFτ)]11
[exp(MMFτ)]12
[exp(MMFτ)]22
[exp(MMFτ)]21
1

m−1 [exp(MMFτ)]23



= e−τ


cosh(β

√
mτ)

1√
m

sinh(β
√
mτ)

1 + cosh(β
√
mτ)−1

m
1√
m

sinh(β
√
mτ)

1
m (cosh(β

√
mτ)− 1)

 . (S20)

We estimate the extent to which Eq. (S20) is valid
as follows. First, we need m � 1, because the initial
condition pMF

3 = 1/(m − 1) should satisfy pMF
3 � 1.

Second, pMF
3 must satisfy

pMF
3 (τ) ≤ β(1− e−τ ) + pMF

3 (0)e−τ (S21)

because pMF
1 ≤ 1 in Eq. (S17). To satisfy pMF

3 � 1, we
need τ < 1/β. This condition remains unchanged by re-
scaling (τ, β) to (cτ, β/c). These two conditions are suf-
ficient for this approximation to be valid. If m� 1 is vi-
olated, the individual-based approximation significantly
underestimates the epidemic threshold for any finite τ
because it ignores the effect of stochastic dying-out. If
τ < 1/β is violated, the approximation (dashed lines in
Fig. 2 (b) and (d)) underestimates the epidemic thresh-
old because dynamics on the star graph deviate from the
linear regime. In particular, the epidemic threshold ob-
tained from the approximation (Eq. (S48)) remains finite
even in the limit τ → ∞, whereas analytical (Eq. (8))
and numerical (Fig. 2) results diverge at a finite τ .
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DERIVATION OF EQ. (8)

At the epidemic threshold, the largest eigenvalue of T
is equal to unity. Let v = (v1, v2, . . .)

> be the corre-
sponding eigenvector of T . We normalize v such that∑∞
j=1 vj = 1. By substituting Eq. (7) in v = Tv, we

obtain the system of equations

v1 = c′3v1 + c′4

∞∑
n=1

〈an〉vn + c′5

∞∑
n=1

〈an−1〉vn, (S22)

v2 = c′1v1 + c′3v2 + c2

∞∑
n=1

〈an−1〉vn, (S23)

vj = c′1vj−1 + c′3vj (j ≥ 3). (S24)

Equation (S24) gives

vj =
q

〈a〉
vj−1 (j ≥ 3), (S25)

where

q ≡ 〈a〉c
′
1

1− c′3
. (S26)

By combining Eqs. (S23) and (S25), we obtain

(q + r)v1 = 〈a〉 [1− (1 + qS)r] v2, (S27)

where

r ≡ 〈a〉c
′
2

1− c′3
, (S28)

S(q) ≡
∞∑
n=0

〈an+2〉
〈a〉n+2

qn =
1

〈a〉2

〈
a2

1− a
〈a〉q

〉
. (S29)

Because v is normalized, we obtain

v =



[〈a〉−q][1−(1+qS)r]
r+〈a〉+(1+qS)[q−〈a〉]r

[1− q
〈a〉 ](q+r)

r+〈a〉+(1+qS)[q−〈a〉]r
q

〈a〉 [1− q
〈a〉 ](q+r)

r+〈a〉+(1+qS)[q−〈a〉]r

( q
〈a〉 )

2
[1− q

〈a〉 ](q+r)
r+〈a〉+(1+qS)[q−〈a〉]r

...


. (S30)

Equation (S22) leads to

[1− s− u]v1 = 〈a〉 [sS + (1 + qS)u] v2, (S31)

where,

s ≡ 〈a〉c
′
4

1− c′3
, (S32)

u ≡ c′5
1− c′3

. (S33)

By substituting Eq. (S30) in Eq. (S31), we obtain

f(τ, βc) ≡
(1− r)(1− s)− (1 + q)u

S(q)

− qr − qs+ qrs− q2u− rs = 0, (S34)

which is Eq. (8) in the main text. If all nodes have the
same activity potential a, Eq. (S34) is reduced to

f(τ, βc) = 1− q − r − s− u = 0. (S35)

CONVERGENCE OF THE MACLAURIN SERIES

We derive the condition under which the Maclaurin se-
ries in Eq. (5) converges for any t when β ≤ βc. First, at
t = 0, the series converges because w(0) = (p0, 0, 0, ...)

>.
Second, consider a finite t. It should be noted that the

series is only defined at t that is a multiple of τ . Because
Tij = 0 (i ≥ j + 2) in Eq. (7), we obtain

wn(t) = 0 for n ≥ 1 +
t

τ
. (S36)

Therefore, the series converges.
Third, we consider the limit t→∞. If β < βc, because

lim
t→∞
〈ρ〉 = 0, (S37)

we obtain

lim
t→∞

wn(t) = 0 for n ≥ 1. (S38)

Therefore, the series converges. For β = βc, we consider
the convergence of the series when

lim
t→∞

w(t) = bv, (S39)

where v is the eigenvector of T given by Eq. (S30), and
b is a constant. Because Eq. (S30) yields

lim
j→∞

vj+1

vj
=

q

〈a〉
, (S40)

the radius of convergence is equal to 〈a〉/q. To ensure
convergence, we require that

max
i

(ai) <
〈a〉
q
. (S41)

Because ci (1 ≤ i ≤ 5) are probabilities, we obtain

c1 ≤ 1, (S42)

c3 ≤ 1. (S43)

By substituting Eqs. (S42) and (S43) in the definitions
of c′1 and c′2, we obtain

c′1 ≤ 1− e−τ , (S44)

c′3 ≤ e−τ +m〈a〉(1− e−τ ). (S45)
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By substituting Eqs. (S44) and (S45) in Eq. (S26), we
obtain

q ≤ 〈a〉
1−m〈a〉

. (S46)

Inequalities (S42)–(S46) hold with equality in the limit
β → ∞. Hence, a sufficient condition for convergence is
given by

max
i

(ai) < 1−m〈a〉. (S47)

Equation (S47) holds true in practical situations because
the assumption m2〈a〉 � 1 guarantees that m〈a〉 � 1
and ai is a probability.

EPIDEMIC THRESHOLD UNDER THE
INDIVIDUAL-BASED APPROXIMATION

When m� 1, the epidemic threshold can be obtained
by the individual-based approximation [1, 4, 5]. We as-
sume that all nodes have the same activity potential a.
By substituting Eq. (S20) in Eq. (S35), we obtain

βc ≈
1√
mτ

ln

(
1 +

eτ − 1

2
√
ma

)
. (S48)

Equation (S48) agrees with the value derived in [1]. Note
that this approximation is valid only for small τ (τ <
1/βc).

DERIVATION OF τ∗ FOR GENERAL ACTIVITY
DISTRIBUTIONS

In the limit β →∞, we obtain ci → 1 (1 ≤ i ≤ 5). For
general activity distributions, f(τ∗, βc → ∞) = 0 leads
to

τ∗ = − ln

(
1− b+

√
b2 + 4d

2

)
, (S49)

where

b = m〈a〉2 [1−m〈a〉]−3 [2− (m+ 1)〈a〉]S
(

〈a〉
1−m〈a〉

)
+ m〈a〉 [1−m〈a〉]−2

[
m+ 1− (m2 + 1)〈a〉

]
, (S50)

d = m2〈a〉2 [1−m〈a〉]−3 [1− (m+ 1)〈a〉]S
(

〈a〉
1−m〈a〉

)
− m2〈a〉2 [1−m〈a〉]−2 . (S51)

DERIVATION OF mc FOR GENERAL ACTIVITY
DISTRIBUTIONS

At m = mc, an infinitesimal increase in τ from 0 to ∆τ
does not change the βc value. For general activity distri-
butions, by setting ∂f/∂τ = 0 for f given by Eq. (S34),
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FIG. S3. Epidemic threshold and numerically calculated
prevalence for the activity-driven model with link dynamics
driven by a reinforcement process [6]. We set m = 1 in (a) and
(c), and m = 10 in (b) and (d). We used the original activity-
driven model in (a) and (b) and the extended model with
c = 1 in (c) and (d). The solid lines represent the epidemic
threshold obtained from Eq. (8). All nodes have ai = 0.05
(1 ≤ i ≤ N) in (a) and (c), and ai = 0.005 (1 ≤ i ≤ N) in
(b) and (d). We calculated the prevalence averaged over 100
simulations after discarding the first 15000 time steps in each
simulation. We set N = 2000 and ∆t = 0.002.

we obtain

mc =
1 + 2

√
〈a2〉
〈a〉

1− 2
√
〈a2〉 − 2 〈a

2〉
〈a〉

. (S52)

ACTIVITY-DRIVEN MODEL WITH A
REINFORCEMENT PROCESS

We carried out numerical simulations for an extended
activity-driven model in which link dynamics are driven
by a reinforcement process [6]. The original activity-
driven model is memoryless [7]. In the extended model,
an activated node i connects to a node j that i has al-
ready contacted with probability 1/(ni+c) and to a node
j that i has not contacted with probability c/(ni + c),
where ni denotes the number of nodes that node i has
already contacted.

The numerically calculated prevalence is compared be-
tween the original model (Figs. S3(a) and S3(b)) and the
extended model with c = 1 (Figs. S3(c) and S3(d)). We
replicate Figs. 2(a) and 2(b) in the main text as Figs.
S3(a) and S3(b) as reference. All nodes are assumed to
have the same activity potential ai = 0.05 (1 ≤ i ≤ N)
in (a) and (c) and ai = 0.005 (1 ≤ i ≤ N) in (b) and
(d). Figure S3 indicates that the extended model only
slightly changes the epidemic threshold.
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STOCHASTIC m

We consider the case in which the strength of concur-
rency, m, is not constant. To analyze this case, we change
the definitions of c′1, c′2, c′3, c′4, and c′5 to

c′′1 = E[c1 − e−τ ], (S53)

c′′2 = E[mc2], (S54)

c′′3 = E[e−τ +m〈a〉(c3 − e−τ )], (S55)

c′′4 = E[mc4], (S56)

c′′5 = E[m(m− 1)〈a〉c5], (S57)

where E[·] is the expectation with respect to the distri-
bution of m. The mean degree is given by 〈k〉 = 2aE[m].
Using Eqs. (S53)–(S57) instead of c′i (1 ≤ i ≤ 5), we de-
rived the epidemic threshold in the same manner as the
derivation of Eq. (8). The phase diagrams of the epi-
demic threshold when m obeys a truncated Poisson dis-
tribution and a power-law distribution are shown in Figs.
S4(a) and S4(b), respectively. We obtain βc = 1/〈k〉
at τ = 0. We set the activity potential of all nodes
a = 〈k〉/(2E[m]) such that the epidemic threshold is the
same for all E[m] at τ = 0. We numerically calculated
mc at which τc = 0. For the power-law distribution of
m, we cannot make E[m] smaller than mc because the
distribution does not have a probability mass at m = 0
by definition. However, the phase diagrams in the case of
both the truncated Poisson and power-law distributions
of m are qualitatively similar to the case of constant m.

To gain analytical insights, we calculated the phase
diagrams when m is equal to m1 and m2 with probabil-
ities p̃ and 1 − p̃, respectively. We varied p̃ between 0
and 1. Here again, we set the activity potential of all
nodes a = 〈k〉/(2E[m]) such that the epidemic threshold
is the same for all E[m] at τ = 0. The phase diagram
(Fig. S4(c)) is again qualitatively similar to that found
in the case of constant m.

HETEROGENEOUS ACTIVITY DISTRIBUTIONS

We analyzed the phase diagram for different distribu-
tions of activity potentials to confirm the robustness of
the results shown in the main text. We consider an ex-
ponential distribution and a power-law distribution with
exponent 2.5. We numerically calculate the epidemic
threshold by solving Eq. (8) and derive τ∗ and mc from
Eqs. (S49) and (S52), respectively. The phase dia-
grams for the exponential and power-law distributions
are shown in Figs. S5(a) and S5(b), respectively. These
results are qualitatively similar to those found when all
nodes have the same activity potential value.

TEMPORAL NETWORKS COMPOSED OF
CLIQUES

We consider the case in which an activated node cre-
ates a clique (a fully-connected subgraph) with m ran-
domly chosen nodes instead of a star graph. This situa-
tion models a group conversation among m + 1 people.
We only consider the case in which all nodes have the
same activity potential a. The mean degree for a net-
work in a single time window is given by 〈k〉 = m(m+1)a.
The aggregate network is the complete graph. We impose
m2a� 1 so that cliques in the same time window do not
overlap.

As in the case of the activity-driven model, we denote
the state of a clique by {x, y, z} (x, y ∈ {S, I}, 0 ≤ z ≤
m − 1), where x and y are the states of the activated
node and another specific node, respectively, and z is
the number of infected nodes in the other m − 1 nodes.
The transition rate matrix of the SIS dynamics on this
temporal network model is given as follows. The rates
of the recovery events are given by Eqs. (S3), (S4), and
(S5). The rates of the infection events are given by

M{I,S,z},{S,S,z} = zβ, (S58)

M{S,I,z},{S,S,z} = zβ, (S59)

M{I,I,z},{S,I,z} = (z + 1)β, (S60)

M{I,I,z},{I,S,z} = (z + 1)β, (S61)

M{S,S,z+1},{S,S,z} = z(m− 1− z)β (z ≤ m− 2),

(S62)

M{I,S,z+1},{I,S,z} =(z + 1)(m− 1− z)β (z ≤ m− 2),

(S63)

M{S,I,z+1},{S,I,z} =(z + 1)(m− 1− z)β (z ≤ m− 2),

(S64)

M{I,I,z+1},{I,I,z} =(z + 2)(m− 1− z)β (z ≤ m− 2).

(S65)

We obtain ci (1 ≤ i ≤ 5) from M in the same fashion
as in the case of the activity-driven model. Because of
the symmetry inherent in a clique, we obtain c1 = c3 and
c2 = c4 = c5. Therefore, Eq. (S35) is reduced to

f(τ, βc) = 1− q − (m+ 1)r = 0. (S66)

Calculations similar to the case of the activity-driven
model lead to

τ∗ = ln
1− (1 +m)a

1− (1 +m)2a
≈ 〈k〉, (S67)

mc = 2. (S68)

The phase diagram shown in Fig. S6 is qualitatively
the same as those for the activity-driven model (Fig. 3).
Note that, in Fig. S6, we selected the activity potential
value a to force βc to be independent of m at τ = 0, i.e.,

a =
〈k〉

m(m+ 1)
. (S69)
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FIG. S4. Phase diagram of the epidemic threshold when m is stochastic; m obeys (a) a truncated Poisson distribution
(0 ≤ m ≤ mmax) and (b) a power-law distribution with exponent 3 (mmin ≤ m ≤ mmax), and (c) a bimodal distribution in
which m takes m1 and m2 with probabilities p̃ and 1− p̃, respectively. In (a) and (b), we set mmax = 11. In (a), we truncated
a Poisson distribution with varying the mean between 0.01 and 8 to modulate E[m]. In (b), We vary mmin between 1 to 9. In
(c), we set (m1,m2) = (10, 1) and varied p̃ to modulate E[m]. We set 〈k〉 = 0.1. The dashed line represents τc. In the gray
regions, βc > 100.
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FIG. S5. Phase diagram of the epidemic threshold when the
activity potential obeys (a) an exponential distribution with
a rate parameter λ (0 ≤ ai ≤ 0.9) and (b) a power-law dis-
tribution with exponent 2.5 (ε ≤ ai ≤ 0.9). We set 〈k〉 = 0.1
at m = 1 and adjust the value of λ and ε such that βc takes
the same value for all m at τ = 0. The solid and dashed
lines represent τ∗ and τc, respectively. In the gray regions,
βc > 100.
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FIG. S6. Phase diagram of the epidemic threshold for tempo-
ral networks composed of cliques. The solid and dashed lines
represent τ∗ (Eq. (S67)) and τc, respectively. All nodes are as-
sumed to have the same activity potential given by Eq. (S69).
We set 〈k〉 = 0.1.

Although Eq. (S67) coincides with the expression of τ∗
for the activity-driven model (Eq. (10)), τ∗ as a function
of m is different between the activity-driven model (solid
line in Fig. 3(a)) and the present clique network model
(solid line in Fig. S6). This is because the values of a are
different between the two cases when m ≥ 2.

EMPIRICAL ACTIVITY DISTRIBUTIONS

The epidemic threshold and prevalence when F (a) is
constructed from empirical contact data at a workplace,
obtained from the SocioPatterns project [8], are shown
in Figs. S7(a) and S7(b) for m = 1 and m = 10, re-
spectively. The results for F (a) constructed from email
communication data at a research institution, obtained
from the Stanford Network Analysis Platform [9], are
shown in Figs. S7(c) and S7(d) for m = 1 and m = 10,
respectively. These results are qualitatively similar to
those shown in Fig. 2.
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FIG. S7. Results for activity potentials derived from empiri-
cal data. The epidemic threshold and numerically simulated
prevalence are shown for m = 1 ((a) and (c)) and m = 10
((b) and (d)). In (a) and (b), the activity potential is con-
structed from contact data obtained from the SocioPatterns
project [8]. This data set contains contacts between pairs of
N = 92 individuals measured every 20 seconds. In (c) and
(d), the activity potential is constructed from email communi-
cation data at a research institution, obtained from the Stan-
ford Network Analysis Platform [9]. Although the original
edges are directed, we treat them as undirected. We assume
that each email exchange event corresponds to a one-minute
contact. We calculate the degree of each node per minute
averaged over time, denoted by 〈ki〉, and define the activity
potential as ai = [〈ki〉 − 〈k〉/2] /m. In (c) and (d), we used
N = 439 individuals satisfying ai > 0 (some individuals ex-
changed few emails such that ai < 0). We set ∆t = 0.001.
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