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Many real networks are equipped with short diameters, high clustering, and power-law degree distributions.
With preferential attachment and network growth, the model by Barabási and Albert simultaneously reproduces
these properties, and geographical versions of growing networks have also been analyzed. However, nongrow-
ing networks with intrinsic vertex weights often explain these features more plausibly, since not all networks
are really growing. We propose a geographical nongrowing network model with vertex weights. Edges are
assumed to form when a pair of vertices are spatially close and/or have large summed weights. Our model
generalizes a variety of models as well as the original nongeographical counterpart, such as the unit disk graph,
the Boolean model, and the gravity model, which appear in the contexts of percolation, wire communication,
mechanical and solid physics, sociology, economy, and marketing. In appropriate configurations, our model
produces small-world networks with power-law degree distributions. We also discuss the relation between
geography, power laws in networks, and power laws in general quantities serving as vertex weights.
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I. INTRODUCTION

Networks of interacting agents such as humans, comput-
ers, animal species, proteins, and neurons have been investi-
gated vigorously. They are typically complicated, meaning
that their structures are far from absolutely regular or entirely
random. Two principal quantities characterizing networks are
the average shortest path lengthL and the clustering coeffi-
cient C. The number of edges in the shortest path averaged
over all vertex pairs definesL. Most real networks have
small L, namelyL~ log n or even less, wheren is the num-
ber of vertices. The local clustering coefficient is the normal-
ized number of connected triangles containing a specific ver-
tex. If the vertex degree isk, or there arek edges adjacent to
the vertex, the normalization factor isksk−1d /2. This quan-
tity averaged over all the vertices definesC, and real net-
works usually have largeC. A small L and a largeC cannot
be simultaneously realized either by lattices, trees, or the
ordinary random graphsf1,2g. Then, Watts and Strogatz pro-
posed the small-world networks that fulfill these require-
ments at the same timef1g.

Another important observation is that not all but many
real networks have power-law degree distributionspskd
~k−g, typically with scaling exponent 2,g,3 f2g. The
small-world networks are short of the scale-free property. In
light of this, Barabási and AlbertsBAd proposed a network
model that generates scale-free networks withg=3 f2g. Two
essential features of the BA model aresid network growth
realized by sequentially adding vertices and edges, andsii d
preferential attachment, meaning that newly introduced
edges are more prone to be linked to vertices with largerk.
Since the proposal of the BA model, its various extensions
and related models, such as the fitness model and the hierar-
chically growing models, have been presented. These models
are successful in incorporating more realistic aspects of net-
works including tunableg and largeC that the original BA
model actually lacksf2–9g.

To sum up, some BA-type models and hierarchical net-
works own largeC, small L, and scale-freepskd. However,
real scale-free networks are not necessarily growing. The
number of vertices may not change greatly over time for
networks of friends, companies, interacting proteins, and
neurons, to name a few. In view of this, a class of nongrow-
ing scale-free networks has been studied in which whether
edges are created relies on interaction of vertices with intrin-
sic weightsf10g. Weights represent the fitness of vertices to
win edgesf10–12g and are interpreted as, for example, capi-
tals, social skills, activity levels, information contents, con-
centration or mass of physical or chemical substances, and
the vertex degree itself. The role of such vertex fitness was
argued in growing models as wellf3g. To our surprise, scale-
free pskd emerges even from weight distributions devoid of
power lawsf10,13–15g. As a remark, if an edge exists when
the sum of two vertices’ weights exceeds a prescribed thresh-
old, the network is equivalent to the so-called threshold
graphf16g. This case eases analytical treatments.

Our focus in this paper is the geographical extension of
the nongrowing scale-free networks, which has been over-
looked so far. Actually, real networks are often embedded in
topological spaces. Even the Internet, in which the speed of
information transmission is technically independent of the
physical distance, is subject to geographical constraints be-
cause of wiring costsf5–7,17g. In addition, it is often advan-
tageous to map nonphysical quantities or networks into geo-
graphical spaces by, for example, the principal component
analysis. Then, influence of the distance between graduated
traits is questioned.

In fact, the Watts-Strogatz small-world network already
addressed this issue since it is constructed on lattice sub-
stratesf1g. Let us denote bygsrd the probability that two
vertices with distancer are connected. In lattice networks
supplied with additional edges, wheregsrd~ r−d, generated
networks have smallL whend is smaller than a critical value
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f18–20g. Otherwise, global connections are too scarce to
elicit the small-world property. The same is true for growing
scale-free networks. Although the BA model is irrelevant to
embedding spaces, which is actually the main cause for
smallC, it has been extended to incorporate underlying geo-
graphical spaces andgsrd=r−d. Then, a transition from the
scale-free to nonscale-free regime as well as one from small
L to largeL occurs at a certaind f4–7g.

Althoughgsrd plays a key role in determining the network
structure, characterization ofgsrd in real-world networks still
seems controversial. In applications such as the Internet rout-
ing f21g and neural networksf22g, gsrd decaying exponen-
tially or in a Gaussian manner is commonly used. Exponen-
tial decays are also inferred from biological neural networks
f23g. However, many other data are in favor ofgsrd~ r−d. For
instance, a recent extensive analysis of the Internet concludes
gsrd~ r−1 f6g. Power laws also hold for macroscopic connec-
tivity of brain regions identified by correlated activities
fgsrd~ r−2g f24g and for microscopic neural networksf25g. In
social sciences, evaluatinggsrd seems more difficult because
of presumably larger noises. Accordingly, both power-law
and exponential forms ofgsrd have been inferred, sometimes
even from identical dataf26,27g. In the face of the ambiguity
of available data, it is worthwhile to examine models to see
how various types ofgsrd affect network properties to help
interpret real data.

In the context of nongrowing geographical networks,
there is an algorithm that generatespskd=k−g with a pre-
scribedg f17g. However, investigations of nongrowing geo-
graphical networks are largely missing, particularly when in-
teraction of vertices, which is not considered inf17g, takes
place. We examine a geographical threshold network model
with various configurations. In Sec. II, we review the non-
geographical threshold model with vertex weights. In Sec.
III, we introduce the geographically extended model and
analyze some practical cases, including the unit disk graph
and the gravity model. Section IV is devoted to discussing
our model in the context of network search problems and
real data.

II. NONGEOGRAPHICAL THRESHOLD NETWORK
MODEL

Before taking geography into account, we briefly summa-
rize the ordinary threshold network model, which constitutes
a subclass of networks with intrinsic vertex weights
f10,13–15g.

We preparen vertices denoted byvi s1ø i ønd, each of
which carries a weight variablewi PR randomly and inde-
pendently distributed as specified by the density function
fswd. As mentioned in Sec. I,wi quantifies the propensity for
vi to gain edges. Let

Fswd =E
−`

w

fsw8ddw8 s1d

be the cumulative distribution function. We explain with ad-
ditive weights since multiplicative weights are transformed
into additive weights by taking the logarithm. In the nongeo-

graphical threshold model, an edge exists betweenvi and
v j si Þ jd if and only if wi +wj ùu. When n is sufficiently
large, the weightw uniquely determines the vertex degreek
by

k = nf1 − Fsu − wdg. s2d

Using Eq.s2d, the degree distributionpskd s0øk,nd is writ-
ten as

pskd = fswd
dw

dk
=

fFu − F−1S1 −
k

n
DG

nfFF−1S1 −
k

n
DG . s3d

Because the model is simple,L, C, and the correlation be-
tween the degrees of adjacent vertices can be analytically
derived as wellf13,15g. The small-world properties charac-
terized by a largeC and a smallL are fulfilled for a wide
choice of fswd. More microscopically, vertices with small
degrees haveCskd near 1 and form the peripheral part of the
network. It is connected to the cliquish core with largerk and
smallerCskd. Strictly speaking, the core consists of the ver-
tices withwùu /2, and the separability of this kind is known
in the graph theoryf16g. A similar separability is also men-
tioned in other literaturef11g.

The degree distribution depends onfswd. An easily solv-
able example is the exponential weight distribution given by

fswd = le−lw s0 ø wd. s4d

We set u.0 because otherwise the network becomes the
complete graph. Althoughfswd in Eq. s4d is not reminiscent
of the power law, substitution of Eq.s4d into Eq. s3d yields

pskd~k−2 f10g. It follows that Cskd~k−2 and k̄skd~k−1,

where k̄skd is a measure of degree correlation, namely, the
average degree of the neighbors of a reference vertex with
degreek f13,15g. The same scaling law is also maintained for
the logistic distribution fswd=be−bw/ s1+e−bwd2, which is
just a slight modification of Eq.s4d f15g. Another major class
of fswd is the Pareto distribution defined by

fswd =
a

w0
Sw0

w
Da+1

sw ù v0d, s5d

wherea,w0.0. Equations5d leads topskd~k−g with g=sa
+1d /a.1, Cskd~k−1, and k̄skd~k−1 f15g. Particularly,Cskd
~k−1 is more consistent with real dataf8g compared with
Cskd~k−2 derived from Eq.s4d. The asymptotics is the same
for the Cauchy distributionfswd=1/fps1+w2dg swPRd,
which is devoid of the lower bound ofw. The inverse prob-
lem to determinefswd from pskd has also been addressed
f14g.

A crux of the threshold model is that scale-freepskd re-
sults from a wide class offswd. Analytical and numerical
evidence indicates thatg=2 is the baseline scaling exponent
of the threshold model, which contrasts withg=3 for the BA
model f15g. Since the effect of a lower bound ofw seems
marginal, we mainly use the exponential and Pareto distribu-
tions for the geographically extended model.
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III. GEOGRAPHICAL THRESHOLD NETWORK MODEL

To generalize the model introduced in Sec. II in the geo-
graphical case, we assume that vertices are uniformly and
independently distributed with densityr in a d-dimensional
Euclidean space whose coordinates are denoted by
xi ,x2,¯ ,xd. Then a pair of vertices with weightsw, w8, and
Euclidean distancer are connected if and only if

sw + w8dhsrd ù u, s6d

where hsrd is assumed to decrease inr, althoughhsrd in-
creasing in r has also been considered in other models
f4,7,18g. As a special case, Eq.s6d with hsrd~ r−1 is equiva-
lent to the Boolean modelf28g.

Based on Eq.s6d, two vertices with weightsw andw8 are
adjacent if

r ø h−1S u

w + w8
D . s7d

For a vertex with weightw, the degreek is represented by

k =E fsw8ddw8Fnumber of vertices in a ball

of radius =h−1S u

w + w8
DG . s8d

This recovers a general formulationf10,13g, in which k is
calculated from the joint probability as a function ofw and
w8 that a pair of vertices are connected. Combination of Eq.
s8d and fswd providespskd. If we take an average overw but
not over r, we obtaingsrd. Although gsrd decreases inr if
hsrd does, it generally differs fromhsrd.

A. Unit disk graph

If fswd=dsw0d, whered is the delta function, two vertices
are adjacent when 2w0hsrdùu. Sincehsrd decreases inr, this
condition is equivalent tor ø r0, where 2w0hsr0d=u. Accord-
ingly,

gsrd = H1 sr ø r0d,

0 sr . r0d,
s9d

and the generated network is the unit disk graph, which is
applied to modeling broadcast and sensor networksf16,29g.
If fswd has a finite support, the network resembles the unit
disk graph in the sense that there exists an upper limitr
=r0 only below which gsrd.0. With this case included,
long-range edges are entirely prevented, and the network has
L~n1/d, spoiling the small-world property. However, if we
allow gsrd=p sr . r0d with 0,p>n−1!1, we have a type of
the Watts-Strogatz small-world networks with smallL f2g.
Even so,pskd is essentially homogeneous. To introduce the
scale-free property, we need to use more inhomogeneous ver-
tex weights.

B. Exponential weight distribution with h„r…Ê r−b

Let us consider the exponential weight distribution given
in Eq. s4d and set

hsrd = r−b, s10d

where bù0. This case generalizes the nongeographical
model explained in Sec. II, which corresponds tob=0. For a
larger b, geographical effects are more manifested. As a
function of the weight, the degree is calculated as follows:

kswd =E
0

`

fsw8ddw8E
sw+w8d/rbùu

r dx1 ¯ dxd

= rE
0

`

le−lw8pd/2GSd

2
+ 1DSw + w8

u
Dd/b

dw8

= c1e
lwGS d

b
+ 1,lwD , s11d

where

Gsa,xd ; E
x

`

ta−1e−tdt s12d

is the incomplete Gamma function,

c1 ;
rpd/2

suldd/bGSd

2
+ 1D , s13d

andGsad;Gsa ,0d is the ordinary Gamma function. To ob-
tain pskd from kswd, we just need to eliminatew from Eq.
s11d as we have done in Eq.s3d.

However, an analytical form ofpskd corresponding to Eq.
s11d is unavailable due to the incomplete Gamma function.
Accordingly, let us deal with some special cases. By integrat-
ing Eq. s12d by parts, we derive

Gsa,xd = sa − 1d ! e−x o
a8=0

a−1
xa8

a8!
sa P Zd, s14d

whereZ is the set of integers. In the limitb→0, Eq. s14d
implies

lim
b→0

GS d

b
+ 1,lwD
S d

b
D!

= 1. s15d

Actually, k explodes asb→0 because Eq.s15d means
limb→0 G(sd/bd+1,lw)=`, reflecting the density notation
of the vertex distribution. Putting aside this nonessential
point, G(sd/bd+1,lw) is asymptotically independent ofw,
and we have

kswd ~ elw s16d

and

pskd ~ e−2lw ~ k−2, s17d

which reproduces the results for the nongeographical coun-
terpartf10,13,15g. For a sufficiently smallb, Eq. s15d effec-
tively approximates the incomplete Gamma function. Conse-
quently, scale-freepskd with g=2 or a slightly largerg is
almost preserved.

Whenb=d, we obtain
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kswdc1e
lwGs2,lwd = c1s1 + lwd s18d

and

pskd =
le−lw

c1l
=

expS1 −
k

c1
D

c1
. s19d

The degree distribution now has an exponential tail, and
hubs are less likely compared with Eq.s17d. Another special
case withb=d/2 leads to

kswd = c1s2 + 2lw + l2w2d s20d

and

pskd =
le−lw

2c1sl + l2wd
=

expS1 −Î k

c1
− 1D

2c1
3/2Îk − c1

. s21d

Equations21d is a stretched exponential distribution with a
minor modification factork−1/2, andpskd decays more slowly
than in Eq.s19d naturally becauseb=d/2,d.

Similarly, k andw are connected by a power-law relation
if b.0. Then,pskd is a type of stretched exponential. In
geographical preferential attachment models, the crossover
from a power-law tail to a stretched exponential tail occurs at
a finite value of the control parameter similar tob f4–7g. We
could say that, in our model, the same transition happens at
b=0. However, the gist is that for a sufficiently smallb ,
pskd is practically indiscernible from the scale-free distribu-
tion.

Since it seems difficult to analytically calculate other net-
work characteristics such asL andC, we resort to numerics.
We uniformly scatter n=10 000 vertices in a two-
dimensional square lattice with side length 100 and periodic
boundary conditions. Because more edges obviously means
smallerL, the mean degree denoted bykkl is kept at 20. The
analytic expression forkkl is available only whenb=0 as
follows f13,15g:

kkl = e−lusrld + lud, s22d

wherel is the side length of the area. Therefore, we manually
modulateu to preservekkl as we varyb. Excluding isolated
components, which actually consist of just a few vertices, we
show a dependence ofL andC on b in Figs. 1sad and 1sbd,
respectively. Although the main simulations are done with
n=10 000sthickest linesd, we also show results forn
=2000sthinnest linesd, 4000, 6000, and 8000. The inset of
Fig. 1sad shows the dependence ofL on n, with upper lines
corresponding to larger values ofb. Figure 1sad shows thatL
is insensitive ton only when b,0.5. We expect thatL
~ log n approximately holds in this regime. On the other
hand, we expectL~n1/d or similar scaling for largerb. As b
increases,C decrease to some extent but not too much to
spoil the clustering propertyfFig. 1sbdg. Figures 1scd, 1sdd,
and 1sed show pskd scrossesd and Cskd scirclesd for b=0.5,
b=1.5, andb=2.5, respectively. As expected, smallb yields
a long tail indicative of the power lawfFig. 1scdg. In contrast,
Fig. 1sed shows thatpskd decays much faster whenb is

larger. Consequently, networks generated by sufficiently
small b are endowed with the scale-free and small-world
properties simultaneously in a geographical context, which
extrapolates the nongeographical results withb=0. In regard
to the vertexwise clustering coefficients,Cskd~k−2 holds
whenb=0 f13,15g. The numerical results in Figs. 1scd, 1sdd,
and 1sed scirclesd supportCskd~k−2 except that vertices with
small Cskd are more scarce for largerb.

The probabilitygsrd that two vertices with distancer are
adjacent becomes

gsrd =E
0

`

le−lwdwE
sw+w8d/rbùu

le−lw8dw8

=E
0

urb

le−lwdwE
urb−w

`

le−lw8dw8 +E
urb

`

le−lwdw

= e−lurb
slurb + 1d, s23d

FIG. 1. Network properties withhsrd=r−b and the exponential
weight distribution withl=1 andkkl=20. Dependence ofsad L and
sbd C on b for n=2000 sthinnest linesd, 4000, 6000, 8000, and
10 000sthickest linesd is presented. The relation betweenL andn is
shown in the inset ofsad, with upper lines corresponding to largerb.
Also shown are numerically obtainedpskd scrossesd and Cskd
scirclesd with n=10 000 forscd b=0.5, sdd b=1.5, andsed b=2.5.
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indicating a stretched exponential decay inr unlessb=0.
Particularly, the main decay rates forb=1 andb=2, respec-
tively, correspond to the standard exponential and the Gauss-
ian, which are widely used in applicationsf21,22g. As a gen-
eral remark,gsrd does not coincide withhsrd~ r−b even
asymptotically.

The loss of the small-world property for largeb seems to
stem from thesstretchedd exponential decay ofgsrd. In addi-
tion, gsrd derived here qualitatively disagrees with many real
dataf6,24,25g. As a result, exponential types ofgsrd and the
Gaussiangsrd may be far from universal. This is a striking
caveat to many fields, such as neuroscience, social dynamics,
and epidemics, which conventionally assume geographical
networks with exponentially decaying or Gaussiangsrd. We
do not explore consequences ofhsrd that decays faster than
hsrd~ r−b, since such anhsrd must yield even largerL. On
the other hand,hsrd with slower decays, orhsrd~ slog rd−1, is
examined in Sec. III D.

C. Power-law weight distribution with h„r…Ê r−b

Quantities that can serve as vertex weights, such as the
city and firm sizesf30–33g, number of pages in a website
f34g, land pricesf35g, incomesf36g, importance of airports
f9g, and importance of academic authorsf9g, are often dis-
tributed according to power laws. The history of these power
laws is much longer, dating back to the Pareto and Zipf laws,
than those recently found for networksf2g. The simplest way
to associate the power laws of networks with those of vertex
weights is simply to interpret the vertex degree as the weight.
However,w andk are generally nonidenticalf9,15g.

Let fswd be the Pareto distribution given in Eq.s5d. With
the interaction strength decaying algebraically
fEq. s10dg, we have

kswd = rE
w0

` a

w0
Sw0

w8
Da+1

pd/2GSd

2
+ 1DSw + w8

u
Dd/b

dw8

=
aw0

arpd/2

ud/b GSd

2
+ 1Dwsd/bd−a

3 E
w0/w

` s1 + xdd/b

xa+1 dx sw ù w0d. s24d

Convergence ofkswd necessitates −a+d/b.0. In the limit
w→`, it holds that

E
w0/w

` s1 + xdd/b

xa+1 dx~ E
w0/w

` 1

xa+1dx~ S w

w0
Da

. s25d

Therefore,

kswd ~ wd/b s26d

and

pskd ~

a

w0
Sw0

w
Da+1

d

b
wsd/bd−1

~ k−1−sab/dd. s27d

In contrast to the stretched exponential scenario clarified in
Sec. III B, the power-law weight distribution produces scale-
free pskd=k−g with g=1+sab /dd.

For r large enough to satisfyurbù2w0,

gsrd =E
urb−w0

` a

w0
Sw0

w8
Dd+1

dw8

+E
w0

urb−w0 a

w0
Sw0

w8
Da+1S w0

urb − w8
Da

dw8

= S w0

urb − w0
Da

+E
1

b−1

x−a−1sb − xd−adx, s28d

whereb;urb /w0. To show that the integral in Eq.s28d tends
to be proportional to r−ab as r →`, let us evaluate
bae1

b−1Asxddx, whereAsxd;x−a−1sb−xd−a. First, we obtain

lim inf
b→`

baE
1

b−1

Asxddxù lim
b→`

S b

b − 1
DaE

1

b−1

x−a−1dx

=
1

a
lim
b→`

f1 − sb − 1d−ag =
1

a
. s29d

To bound the integral from the above in the limitb→`, let
us assumeb.4. Noting thatAsxd takes the minimum atx
=sa+1db/ s2a+1d and thatd2Asxd /dx2.0, we derive

lim sup
b→`

baE
1

b−1

Asxddxø lim
b→`

HE
1

sb+2d/3 F 3b

2sb − 1dGa

x−a−1dx+
ba

2
FASb + 2

3
D + AS sa + 1db

2a + 1
DGF sa + 1db

2a + 1
−

b + 2

3
G

+
ba

2
FAS sa + 1db

2a + 1
D + Asb − 1dGFsb − 1d −

sa + 1db
2a + 1

GJ
= lim

b→`
HF 3b

2sb − 1dGa1

a
F1 −S 3

b + 2
DaG +

1

2
S b

b − 1
DaF ab− 2a − 1

s2a + 1dsb − 1dG + Osb−adJ
=

1

a
S3

2
Da

+
a

2s2a + 1d
, `. s30d
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Equationss29d and s30d allow us to conclude an algebraic
decaygsrd~ r−ab in contrast to Eq.s23d. Discussion on net-
work structure is postponed to Sec. III D, where we analyze
the gravity model, which ends up with the same asymptotic
behavior ofpskd andgsrd.

D. Gravity model with Pareto f„w…

As shown in Sec. III B, given the exponentially distrib-
utedw, hsrd~ r−b with a sufficiently smallb yields more or
less desired network properties. More rapidly decayinghsrd
makesgsrd decrease too fast to elicit smallL. How about
hsrd that decays more slowly? To address this issue, we ap-
ply hsrd~ slog rd−1. Since logr can be negative, let us re-
write Eq. s6d as

w + w8 ù u log r . s31d

Equations31d is equivalent to

ewew8 ù ru. s32d

Since edge formation is suppressed by increasing eitherb or
u, let us reinterpretu in Eq. s32d asb, which does not essen-
tially change the model. Further rescaling of the parameters
by W;ew, W;ew8, andR=u−1/br transforms Eq.s32d into

WW8

Rb ù u. s33d

This is the gravity model often used in physics, sociology,
economics, and marketingf26,30,37–39g. The gravity model
is suitable in describing interaction of particles in geographi-
cal spaces when the physical gravitysb=2d or similar mass
interaction based on, for example, populations or chemical
substances, is active. In the sociological context, the original
model stipulatesb=1 f30g, but b ranging from 0.2 to 2.7
have been inferred from later real dataf26,27,37–40g.

The original gravity model is geographical but neglects
weight distributions. On the other hand, multiplicatively in-
teracting weights with power-lawfswd are used to generate
solvable scale-free networks, but they ignore geographyf11g.
We are interested in combined effects of geography and dis-
persed vertex weights. The transformation from Eqs.s31d to
s33d also rescalesfswd unless it is the delta function. When
the weights in Eq.s31d follow the exponential distribution

given in Eq.s4d, the densityf̄sWd of the weights in Eq.s33d
becomes

f̄sWd = fswd
dw

dW
= lS 1

W
Dl+1

, s34d

namely the Pareto distribution witha=l and w0=1. Al-
though we have started withhsrd~ slog rd−1 and additive
weights, we switch to the gravity-model notation for conve-
nience. Now we rewrite Eq.s33d as

ww8

rb ù u s35d

and investigate the network structure whenfswd is the Pareto
distribution.

Before moving on to the Paretofswd, let us note thatfswd
with a finite support only allows local interaction, as ex-
plained in Sec. III A. Then the gravity model yieldsL~n1/d,
which is realized by atomic and molecular interaction by
centrifugal or electric forces; they practically interact only
with others nearby. With the Paretofswd, which facilitates
more global interaction, we obtain

kswd = rE
w0

` a

w0
Sw0

w8
Da+1

pd/2GSd

2
+ 1DSww8

u
Dd/b

dw8

= c2w
d/b, s36d

where

c2 =
rpd/2

ud/b

a

a −
d

b

w0
d/bGSd

2
+ 1D . s37d

Equation s36d is essentially the same as Eq.s24d, and b
.d/a must be satisfied forc2.0. The original gravity
model for social interaction hasb=1 and d=2 f30g, and
hencea.2 is necessary. Combination of Eqs.s5d and s36d
yields

pskd =
abw0

a

c2d
w−a−sd/bd =

abc2
ab/dw0

a

d
k−1−sab/dd. s38d

When rb.w0
2/u, we obtain

gsrd =E
w0

urb/w0 a

w0
Sw0

w
Da+1Sww0

urb Da

dw

+E
urb/w0

` a

w0
Sw0

w
Da+1

dw

=
w0

2a

u a Sa log
urb

w0
2 + 1Dr−ab. s39d

Comparison of Eqs.s27d and s28d with Eqs. s38d and s39d
reveals that the asymptotic behavior ofpskd and that ofgsrd
coincide with those of the additive weight model with the
Pareto fswd and hsrd=r−b. Given the Paretofswd and hsrd
=r−b, whether multiplicative or additive interaction is used
does not matter so much.

Numerically evaluatedL, C, pskd, andCskd for varyingb
are shown in Fig. 2. We setn=10 000,a=1, w0=1, and

kkl =E
c2w0

d/b

`

kpskddk=
abc2w0

d/b

ab − d
s40d

constant at 20. Figures 2sad and 2sbd show thatL andC have
a similar dependence onb to the additive weight model with
exponentialfswd fFigs. 1sad and 1sbdg. Figure 2sad indicates
that a transition from a small-L regime to a large-L regime
occurs somewhere aroundb=3. Since Fig. 2sbd supports that
C remains finite for largen irrespective ofb, the small-world
property is suggested for smallb. The transition appears
similar to the phase transition in geographical BA models
f4,5g. However, in those models,g does not change inb
.0 as far as the network is in the small-world regime,
whereas it does change heresbut seef17gd. As shown in Figs.
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2scd, 2sdd, and 2sed, pskd scrossesd obey power laws whose
scaling exponents are well predicted by Eq.s38d slinesd.
Consequently, the weighted gravity model realizes scale-free
small-world networks whenb is small enough. In this
scheme,g is tunable by varyinga, b, andd. Circles in Figs.
2scd, 2sdd, and 2sed indicateCskd~k−g8 with g8>2 or some-
what smaller. Finally, numerically obtainedgsrd shown by
circles in Figs. 3sad sb=2d and 3sbd sb=3d decays algebra-
ically as predicted by Eq.s39d.

A generated network is shown in Fig. 4 forn=100,d=1,
a=1, w0=1, b=1, and henceg=2. For demonstration pur-

poses, the vertices are aligned on a one-dimensional ring. In
spite of the small size, the figure is indicative of the scale-
free and small-world properties. It is visually comparable to
the BA-type scale-free small-world networks on a ringf5g
and the Watts-Strogatz nonscale-free small-world networks
f1g.

In other geographical network models,L becomes large if
gsrd decays faster thangsrd~ r−d with a certaind.0. For
example, a nonscale-free weightless network model on a lat-
tice owns an ultrasmallL=Os1d for død, small L
=Oslog nd for d,d,2d, and largeL=Osn1/dd for dù2d
f19g. In another nonscale-free network,d=d+1 divides the
small-world and large-world regimesf18g. Also in a one-
dimensional geographical scale-free network model with
preferential attachment, a similar phase transition occurs at
d=1 f5,7g. Based on Figs. 1sad and 2sad , we anticipate that
the gravity model has the phase transition at a criticald
under which the network is geographical, scale-free, and
small-world at the same time. We do not examinehsrd de-
caying faster thanslog rd−1 in the additive weight notation
fEq. s31dg or equivalentlyhsrd decaying faster than algebra-
ically in the multiplicative weight notationfEq. s35dg, for
which we expect too largeL. Let us mention thathsrd
~ slog rd−1, which other models have largely neglected, may
be appropriate if weight interaction is effectively additive.

The results in Sec. III C and those in this section can be
captured as a spatial extension of the results inf14g, which
addresses the inverse problem to determinefswd from pskd.
To obtainpskd~k−g, a pair of vertices with weightsw andw8
that follow fswd=le−lw with l=1 are connected with prob-
ability proportional to expf−sw+w8d / s−g+1dg f14g. In the
gravity model, we have definedW=expswd and W8
=expsw8d so thatW and W8 follow the Pareto distribution.
The probability that the two vertices are connected is propor-
tional to the volume of ad-dimensional ball with radiusr0,
where WW8 / r0

b=u. This probability is proportional tor0
d

FIG. 2. Network properties for the gravity model with the Pareto
weight distribution witha=1, w0=1, andkkl=20. Dependence of
sad L and sbd C on b is presented. Also shown are numerically
obtainedpskd scrossesd, Cskd scirclesd with n=10 000, and the the-
oretical predictionpskd~k−1−ab/d slinesd for scd b=2, sdd b=3, and
sed b=4.

FIG. 3. Numerically obtainedgsrd scirclesd and the prediction
by Eq. s39d slinesd for the gravity model withsad b=2 andsbd b
=3. The other parameter values are the same as those used in Fig. 2.

FIG. 4. An example of the weighted gravity model on a one-
dimensional ring. We setn=100, b=1, and kkl=6. The Pareto
weight distribution witha=1 andw0=1 is used.
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~ sWW8 /udd/b~expfsw+w8dd/bg. We should have d/b
=1/sg−1d, which is consistent with Eq.s38d sincea=l=1.

E. Gravity model with exponential f„w…

Let us treat the gravity model with the exponential weight
distribution. This configuration is equivalent to the model
with additive weight interaction,hsrd~ slog rd−1, and a
weight distribution less broad than the exponential distribu-
tion. It follows that

kswd = rE
0

`

le−lw8pd/2GSd

2
+ 1DSww8

u
Dd/b

dw8

= c1GSd

2
+ 1Dwd/b s41d

and

pskd =
bl

dk1−b/dfc1Gsd/b + 1dgb/d

3 expF− lS k

c1Gsd/b + 1dD
b/dG , s42d

which is a stretched exponential with a modifying factor
k−1+b/d. Furthermore, we have

gsrd =E
0

`

le−lwe−lurb/wdw= 4l2E
0

` cossÎurbud
su2 + 4l2d3/2du

= 4l2E
1

` e−2lÎurbt

Ît2 − 1
dt = 4l2K0s2lÎurbd, s43d

whereK0sxd is the modified Bessel function of the second
kind ff41g, pp. 185, 187–188, and 206g. SinceK0sxd tends to

K0sxd =Î p

2x
e−xF1 −

1

8x
+ OS 1

x2DG s44d

asx→` f41, p. 202g, Eq. s43d asymptotically behaves as

gsrd > 2p1/2l3/2surbd−1/4e−2lÎurb
sr → `d. s45d

With the arguments in Sec. III D taken into account, Eq.s45d
implies thatgsrd decays too fast to make the network small-
world. A lesson is thatfswd considerably influences network
properties, which is not the case for the nongeographical
counterpart f15g. Particularly, the Paretofswd can yield
scale-freepskd and the small-world properties, regardless of
whether weight interaction is additive or multiplicative. On
the other hand, the exponentialfswd explored in this section
and Sec. III B induces exponential types ofpskd and largeL.

IV. SCALE-FREE NETWORKS AND SCALE-FREE
WEIGHT DISTRIBUTIONS

Among the configurations considered in Sec. III, the ad-
ditive weight model and the gravity model with scale-free
fswd and scale-freehsrd generate small-world networks with
scale-freepskd. In this regime, our model relates scale-free

pskd, which is of recent research interest, to general power-
law distributions in nature that have a long history tracing
back to Pareto. Let us discuss the relevance of our model to
real data.

There is a body of evidence that quantities potentially
serving as vertex weights are distributed according to power
laws fswd~w−a−1. For example, the celebrated Pareto and
Zipf laws dictate that incomes and city sizes follow power
laws with a+1=2.0f30,31g. More recent data analyses con-
firm power laws in countrywise city sizessa+1=1.81–2.96
with meana+1=2.136d f32g, firm sizessa+1=2d f33g, the
number of pages per websitesa+1=1.65–1.91d f34g, land
pricessa+1=2.1–2.76d f35g, incomessa+1=1.7–2.4d f36g,
and importance of airportssa+1=1.67d f9g, to name a few.
On the other hand, the original gravity model disregarding
weight distributions assumesb=1 andd=2 f30g. Application
of the values ofa mentioned above to the weighted gravity
model yieldsg=1+ab /d=1.32–1.98, which is too small to
fit real network data whoseg mostly falls between 2 and 3
f2g. As another indication, an extensive data analysis of the
Internet revealedgsrd~ r−d with d=1 f6g. If our model could
underlie the Internet, it should meanab=d=1, and hence
g=1+ab /d=3/2 sinced=2. This g is again too small for
the real Internet and related computer networks that haveg
=1.9–2.8f2g.

However, we regard that our model is not necessarily im-
plausible. First, our model and also the nonspatial threshold
model do not aim to describe growing networks; the Internet
is a typical example of growing networksf2g. Our goal is
rather to discuss nongrowing networks in a geographical
context. As a supporting example, connectivity networks of
brain regions haveg=2, d=ab>2, andd=2 f24g, which are
roughly consistent with Eq.s38d . Actually, the brain network
does not grow so much once an animal is born.

Second, estimation ofb involves much fluctuation be-
cause of the difficulty in data acquisition. Since the proposal
of the gravity model in whichb=1 was inferred from rail-
way and highway travel dataf30g, analyses of various social
activity data have offered a wide range ofb. Among them
are investigations of air travelssb=0.2–2.0d f26,37,38g,
journey to work sb=0.5–1.2d f27g, migration sb
=1.59,2.49d f39g, cedar rapids direct contactssb=2.74d f39g,
marriagesb=0.59,1.53,2.49d f39g, and memorizable social
interactionsb=2d f40g. The ambiguity and the activity de-
pendence ofb render the evaluation ofg pretty uncertain.
Precision ofb in classical studies was also low because of
small data sizes. To undertake more detailed and large-scale
data analysis as inf6,40g is important.

Third, the interaction strength, which is assumed to be
proportional tow1w2/ rb in the gravity model, may be non-
linear in weights. For example, use ofw1

xw2
x / rb f26g results in

g=1+ab /xd. Real data actually support 0.73øxø1.05f37g,
andx smaller than 1 increasesg to make it more realistic. By
the same token, replacingsw1+w2d / rb with sw1+w2dx/ rb in
the additive notation effectively changesb to b /x.

Next, let us relate our model to network search problems
in which an agent on a vertex attempts to reach an unknown
destination by traveling on edges. In small-world networks
defined by lattices supplied with long-range connections with
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densitygsrd~ r−d, which are essentially equivalent to the ran-
dom connection modelf28g, optimal search performance is
realized whend=d f20g. Even though the weighted gravity
model is a different model, simple adoption of our formula
suggestsd=d=ab and g=1+ab /d=2. Computer-related
networks usually haveg.2 presumably because they are
growing. However, some social networks and peer-to-peer
networks, which may be considered to be nongrowing, own
g close to 2f2g, enhancing the search ability.

Similarly, emergence of small-world networks in a geo-
graphical framework requiresd+1.d.d, while latticelike
networks result fromd.d+1, andd,d induces randomlike
networks with low clusteringf18g. Simple-minded substitu-
tion of d=ab leads to d+1.ab.d and 2,g,2+d−1.
Since we usually haved=2 or 3, g associated with general
nongrowing small-world networks may be close to 2. To
summarize, scale-free networks withg around 2 may be op-
timal in the sense of the search performance and the small-
world property. In addition,g=2 is the baseline scaling ex-
ponent of the nongeographical threshold graphf15g, and it
may also be the case for general cooperative nongrowing
networksf10–15,17g. In contrast,g=3 is an important phase-
transition point for percolation and dynamic epidemic pro-
cessesf42g. The BA model hasg=3, which may set the
baselineg for other competitive growing networksf2–8g.
Our current speculation stems from the ansatzg=1+ab /d
=1+d /d plugged into the results obtained from other mod-
els. Further investigation of this issue is an important future
problem.

V. CONCLUSIONS

We have proposed and analyzed a geographical nongrow-
ing network model based on thresholding the sum of two
vertex weights. Our model contrasts with geographical grow-
ing models based on the BA model, and it naturally extends
the threshold graph, the unit disk graph, and the gravity
model, which are widely used in a range of fields. In proper
regimes, small-world networks with scale-free degree distri-
butions and the connection probability algebraically decay-
ing in distance are generated, and they are consistent with
many real data. In contrast to the nongeographical threshold
model, what weight distribution is used matters for network
properties. For scale-free networks to emerge, the weight
should be distributed as specified by power laws. The weight
distribution and the degree distribution generally have differ-
ent scaling exponents, and they are bridged by a relation
involving the spatial dimension and the decay rate of the
interaction strength.
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