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Many real networks are complex and have power-law vertex degree distribution, short diameter, and high
clustering. We analyze the network model based on thresholding of the summed vertex weights, which belongs
to the class of networks proposed by Caldarelliet al. [Phys. Rev. Lett.89, 258702(2002)]. Power-law degree
distributions, particularly with the dynamically stable scaling exponent 2, realistic clustering, and short path
lengths are produced for many types of weight distributions. Thresholding mechanisms can underlie a family
of real complex networks that is characterized by cooperativeness and the baseline scaling exponent 2. It
contrasts with the class of growth models with preferential attachment, which is marked by competitiveness
and baseline scaling exponent 3.
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I. INTRODUCTION

Complex networks have drawn increasing interests in
various disciplines. Recent studies have revealed that net-
works in the real world are far from fairly regular or totally
random. Particularly, real networks have small average short-
est path length and high clustering at the same time, whereas
conventional graphs such as lattices, trees, or the original
random graphs are not equipped with these properties at the
same time[1,2].

The average path length is denoted byL, and it more or
less characterizes the diameter of the graph. The average of
the shortest path length over all the pairs of vertices defines
L. The clustering property can be locally evaluated by the
vertex-wise clustering coefficient, which is the number of
connected triangles containing the vertex in question, nor-
malized by the maximal number of possible triangles. If the
vertex degree, or the number of edges emanating from a
vertex, isk, the normalization constant becomesksk−1d /2.
The clustering coefficientC of the whole graph is the local
clustering coefficient averaged over all the vertices. Watts
and Strogatz proposed the small-world networks that simul-
taneously realize largeC and smallL [1]. However, the
small-world networks are short of the scaling property of
vertex degree distribution denoted bypskd. Indeed, not all
but many real networks satisfypskd~k−g typically with
2,g,3 [2]. Then, Barabási and Albert(BA) developed the
network model, which dynamically generates scale-free net-
works with g=3 [2,3]. The fundamental devices in the BA
model are the network growth and the preferential attach-
ment; vertices are added one after another to the network,
and edges are more prone to be connected to vertices with
largerk. Various scale-free networks including extensions of
the BA model, such as networks with dynamic edge rewiring
[4,5], those with nonlinear preferential attachment[6], those
with weights on edges[7], the fitness model[8], and the
hierarchically and deterministically growing models[9–13]

have been proposed. These models largely yield more flex-
ible values ofg, which is restricted to 3 in the original BA
construction. Furthermore, modifications to reinforce the
clustering property, which the BA model lacks, have also
been done. A simple solution is to embed a triangle-
generating protocol into the BA model[14,15]. Introduction
of a node deactivation procedure also enhances clustering
[16,17]. Yet another solution is appropriately designed ver-
sions of the hierarchical models mentioned above[10,12,13].
In short, largeC, small L, and scale-freepskd can be simul-
taneously realized by the modified BA models or by the hi-
erarchical construction. Both models rely on the combined
effects of network growth and the preferential attachment,
although preferential attachment is not explicitly imple-
mented in the hierarchical networks.

Nevertheless, every network is not apparently growing.
Networks can experience structural changes that are rela-
tively much faster than network growth or aging processes.
In economical networks of companies, friendship networks,
peer-to-peer(P2P) networks, and networks of computer pro-
grams, for example, it seems natural that agents change their
connectivity without significant entries or leaves of mem-
bers. Therefore, there has been a need for developing a non-
growing algorithm to generate realistic networks. In this re-
gard, Caldarelliet al. proposed a class of networks whose
connections are determined by interactions of vertices that
are endowed with intrinsic weights[18–20]. The vertex
weight is considered as a type of fitness[8,18,21–23], which
describes the propensity of vertices to gain edges. It can be
interpreted as money, social skills, or personal influence in
social networks, activeness, the value of information at-
tached to a vertex, concentration or mass of some ingredients
in chemical or biological networks, or the vertex degree it-
self. Surprisingly, scale-free topology spontaneously emerges
even with weight distributions without power laws[18,20].

In this paper, we analyze a subclass of their model that is
based on a deterministic thresholding mechanism. The con-
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nectivity between a pair of vertices is determined by whether
the sum of the weights of the pair exceeds a given threshold.
Actually, this class of networks is equivalent to the threshold
graph in the graph theoretical context[24], and we also dis-
cuss its consequence.

Despite the stochasticity and certain continuity in the real
world, thresholding that is more or less “hard” is often ob-
served. Although the correspondence to our framework is not
perfect, a common form of thresholding is that an agent on a
vertex determines its action or state based on the number of
neighbors taking a specific state. For example, propagation
of riots, fashions, and innovations are considered to be
equipped with thresholding mechanisms[25]. These phe-
nomena have been simulated by dynamic models, such as the
threshold model for social decision[25], the minority games
[26], the threshold voter models, and the threshold contact
processes[27].

In this paper, we show that a baseline power lawpskd
~k−g with g=2 rather than one withg=3 [3] dominates this
class of models and explore its cause and consequence. In
Sec. II, we follow Refs.[18,20] to explain the network
model, and calculate fundamental quantities such aspskd, C,
and the measure for degree correlation. The results in Sec. II
are applied to various weight distribution functions in Sec.
III, extending the results for the exponential distributions in
Refs. [18,20]. Consequently, we find that the power law is
observed for a wide class of weight distributions. In Sec. IV,
we argue that the power law withg=2 is rather ubiquitous in
the sense that it is a unique stable degree distribution when a
network evolves without growth.

II. MODEL

Let us start with a set ofn verticesV=hv1,v2, . . . ,vnj. As
introduced in Refs.[18,20], we assign to eachvi s1ø i ønd a
weight wi PR that is taken randomly and independently dis-
tributed as specified by a given probability distribution func-
tion fswd on R. The weight quantifies the potential for the
vertex to be linked to other vertices[8,18]. We assume that
the weight permits additive operation. Actually, the multipli-
able weights[18,20,21,23] can be easily reduced to the ad-
ditive ones by taking the logarithm ofw. Let

Fswd =E
−`

w

fsw8ddw8 s1d

be the cumulative distribution function, satisfying
limw→−`Fswd=0 and limw→`Fswd=1. The set of edgesE is
defined by the thresholding rule with thresholdu: E
=hsvi ,v jd ;wi +wj ùu , i Þ jj. We focus on this specific case of
more general framework[18,20]. This renders more math-
ematical analysis and allows us to explore the consequence
of vertex interactions based on intrinsic weights. The degree
distribution pskd, where 0øk,n is the vertex degree, is
readily calculated with the use of continuum approximation
corresponding to the thermodynamic limitsn→`d. How-
ever, we confine ourselves to a finiten, and the limitn→`
should be understood as approximation. Putting the upper
limit of k equal ton instead ofn−1, we obtain

k = nE
u−w

`

fsw8ddw8 = nf1 − Fsu − wdg s0 ø k ø nd s2d

and

pskd = fswd
dw

dk
=

fXu − F−1S1 −
k

n
DC

nfX f−1S1 −
k

n
DC . s3d

Because of the one-to-one correspondence betweenk and
w represented by Eq.(2), the vertex-wise cluster coefficient
depends only onk, which simplifies the analysis. We denote
it by Cskd, and the scaling lawCskd~k−1 is often observed in
real and modeled networks[10,12,13,15–17,28]. The cluster-
ing coefficient of the entire graph is given byC
=e0

`Cskdpskddk. To calculateCskd [20], let us consider a ver-
tex v with degreek=nf1−Fsu−wdg. The density of the num-
ber of neighbors with degreek8=nf1−Fsu−w8dg becomes
fsw8d if w8ùu−w and 0 otherwise. With such a neighbor
denoted byv8, the number of connected triangles comprising
v, v8 and another neighbor ofv is obtained as follows. When
k8ùk, a new neighbor ofv is also a neighbor ofv8 because
w8ùw. The number of triangles in this case is

sn − 2df1 − Fsu − wdg > nf1 − Fsu − wdg = k. s4d

Whenk8,k, we have

E
u−w8

`

nfsw9ddw9 = nf1 − Fsu − w8dg s5d

triangles. We obtainCskd by the sum of Eqs.(4) and(5) that
is weighted by the degree distribution. The normalization is
given by dividing it byksk−1d /2 and by another factor of 2,
as each triangle is counted twice. Consequently, we have for
w.u /2, or k.nf1−Fsu /2dg

Cskd =
1

2

1

ksk − 1d/2HEw

`

kfsw8ddw8 +E
u−w

w

nf1 − Fsu

− w8dgfsw8ddw8J
=H− 1 + 2

k

n
+ S1 −

k

n
DFXu − F−1S1 −

k

n
DC

−E
nf1−F„u−F−1s1−k/nd…g

k S1 −
k8

n
Dpsk8ddk8JYsk/nd2.

s6d

Whenwøu /2 or kønf1−Fsu /2dg, we simply end up with

Cskd = 1. s7d

The vertices withCskd=1 forms the peripheral part of the
network that is connected to the cliquish core with smaller
Cskd, as schematically depicted in Fig. 1. The core consists
of the vertices withwùu /2, and it is similar to the winner-
take-all phenomenon found in growing network models
[6,8]. However, more than a single winners are allowed in
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this model. This core-peripheral separability is a rigorous
property of the threshold graph[24]. It is also consistent with
the property of real networks thatCskd saturates for smallk
[12,13] and that vertices in the core are densely connected
[29].

Regarding the network size, real networks are small with
L proportional to lnn or even less[1–3]. Our network has
Lø2 as far as it is free from isolated vertices. This is be-
cause any pair of vertices can be connected by a path of
length 2 passing a vertex with a sufficiently large weight is in
the cliquish part(see Fig. 1). One might ascribe this ultras-
mallness to the fact that the mean degree is of the order ofn,
indicating too many edges per vertex. However, the mean
degree can be kept finite by scalingu according to the in-
crease inn, as discussed in Sec. III A. It turns out that this
modification does not changeL.

The correlation between the degrees of adjacent vertices
also characterizes networks[2]. Actually, degree correlation
can be positive or negative depending on the type of net-
work, as measured for real data using the degree of assorta-
tivity [30]. Here we explain a simpler quantity to gain insight
into the degree correlation[5,16,17], which was first ana-
lyzed in Ref.[20] for the present type of network model. We
denote byk2 the sum of the degrees ofv’s neighbors, which
has degreek. If the degree is uncorrelated,k2/k, or the aver-
age degree of the neighbors, is independent ofv or k. For the
threshold model, we derive

k2 =E
u−w

`

nfsw8dnf1 − Fsu − w8dgdw8

= n2H k

n
−E

nf1−F„u−F−1s1−k/nd…g

n S1 −
k8

n
Dpsk8ddk8J . s8d

Accordingly,

k2

k
= nH1 −

1

k
E

nf1−F„u−F−1s1−k/nd…g

n

sn − k8dpsk8ddk8J , s9d

which generally depends onk.

III. EXAMPLES

In this section, we calculate the quantities introduced in
Sec. II for some weight distributionsfswd.

A. Exponential distribution

Let us begin with recapitulating the case of exponential
weight distribution with deterministic thresholding[18,20].
We set

fswd = le−lw s0 ø wd. s10d

Assuming u.0 so that the generated networks are not
trivial, for w,u, combining Eqs.(3) and (10) results in

pskd =
ne−lu

k2 sne−lu ø k ø nd. s11d

The scale-free distributionpskd~k−2 appears from random
weights whose distribution has nothing to do with power law,
which is a main claim of Ref.[18]. A total of eu

`nfswddw
=ne−lu vertices are condensated atk=n and form a core
[18,20]. In general, this sort of condensation occurs when
fswd has a lower cutoff. However, the number of vertices
with k=n can be made arbitrarily small by setting largelu,
and this feature is not so essential. We numerically simulate
a network withn=50 000, which is fixed throughout the pa-
per,l=1, andu=10. Settingl=1 does not cause the loss of
generality because only the multiple ofl and u appears in
Eq. (11) and the following quantities[Eqs. (12) and (15)].
Figure 2(a) shows that numerical results(crosses) are pre-
dicted by Eq.(11) (lines) sufficiently well [18,20]. In regard
to clustering, Eq.(6) yields

Cskd = 5 1 sne−lu ø k ø ne−lu/2d
n2

k2e−luS1 + lu + 2 ln
k

n
D sne−lu/2 , k ø nd 6

s12d

which agrees with the numerical results in Fig. 2(b) (crosses)
(originally derived in Ref.[20]). Equation(12) shows that
Cskd nearly decays according to the power law with expo-
nent 2. However, analysis of real networks, such as meta-
bolic networks [12], actor networks, semantic networks,
world wide webs, and the Internet[13], suggestsCskd~k−1,
which is also supported by some models
[5,10,12,13,15–17,28]. For this particular example, we have
a larger scaling exponent. Actually, the general power-law
form Cskd~k−g sg8.0d is also reported in model studies
[5,13,15] and in data analysis[5]. The clustering coefficient
of the whole network is

C =E
ne−lu

n

Cskdpskddk= 1 −
4

9
e−lu/2 −

5 + 3lu

9
e−2lu.

s13d

In real networks, the average vertex degree denoted bykkl is
independent ofn on a large scale[1–3]. Since

FIG. 1. Schematic diagram of the threshold model.
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kkl = e−lusn + lud, s14d

finite kkl is maintained by settingu>l−1 ln n. With this scal-
ing of u, our model produces a finite value ofC that does not
decay to 0 in the limitn→`. This result agrees with real
data [2], and C is actually nonvanishing for more general
fswd.

Using Eq.(9), the average degree of neighbors becomes,
as shown in Ref.[20],

k2

k
=

n2e−lu

k
S1 + lu + ln

k

n
D . s15d

Since Eq.(15) is decreasing ink, the network is disassorta-
tive [30] with negative degree correlation, which is a prop-
erty shared by some scale-free network models[5,16,17] and

some social and biological networks[2,5,30]. More intu-
itively, disassortativity of our model is a natural consequence
of the core-peripheral structure. Equation(15) and Fig. 2(c)
(crosses and solid lines) show that there is an approximate
scaling relationk2/k~k−1 [17].

B. Logistic distribution

The logistic distribution is often used, for example, in
statistics and economics. Except the discrepancy in the
asymptotic behavior, it can be used as a more or less appro-
priate substitute for the Gaussian distribution. The logistic
distribution is more tractable because it has an analytic form
of Fswd. For a givenb.0, the logistic distribution is defined
by

fswd =
be−bw

s1 + e−bwd2 . s16d

With

Fswd =
1

1 + e−bw, sw P Rd s17d

F−1sxd = −
1

b
lnS1

x
− 1D , s18d

k =
nebsw−ud

1 + ebsw−ud , s19d

w = u +
1

b
ln

k

n − k
s20d

applied to Eq.(3), we obtain

pskd =
ne−bu

k2S1 + e−bun − k

k
D2 s0 ø k ø nd. s21d

The power lawpskd~k−2 is again manifested ask approaches
n. If 1 ! fsn−kd /kge−bu, k is relatively small, andpskd
>nebu / sn−kd2 does not strongly depend onk. The crossover
from this regime to the power-law regime, which is found in
real data[12,13] and derived by scaling ansatz theory[15],
occurs around 1>fsn−kd /kge−bu, or k>fn/ sebu+1dg. A
larger value ofbu provides a wider range ofk in which the
power law holds. In this range, Eq.(16) is of course approxi-
mated by the exponential distribution represented by Eq.(10)
with b=l. For k small relative ton/ sebu+1d, fswd, with a
correspondingly smallw, does not decay exponentially or
even monotonically. Therefore, whenk is small, the number
of vertices with degreek is not large enough to support the
power law.

We compare in Fig. 2(a) the numerical results foru=6
(open squares) andu=10 (open circles) with the correspond-
ing theoretical results in Eq.(21) (dotted lines). We have set
b=1 without losing generality for the same reason as in Sec.
III A. The effect of u on the position of crossover is clear in
the figure. Since the integrals in Eqs.(6) and (9) cannot be

FIG. 2. Numerical results for(a) pskd, (b) Cskd, and (c) k2/k
using the networks of sizen=50 000 generated by thresholding.
The weight functions are taken to be exponential withl=1, u=10
(crosses), logistic with b=1, u=6 (open squares) and b=1, u=10
(open circles), Gaussian(mean 0 and standard deviation 1.7) with
u=6 (closed squares), and Gaussian withu=10 (closed circles). The
theoretical predictions are shown for the exponential distribution
(solid lines) and the logistic distributions(dotted lines).

MASUDA, MIWA, AND KONNO PHYSICAL REVIEW E 70, 036124(2004)

036124-4



explicitly calculated, numerically evaluatedCskd and k2/k
with the same parameter values are shown in Figs. 2(b) and
2(c), respectively. Similar to the case of the exponential dis-
tribution, the crossover from the plateau to the power law is
observed forCskd with the same scaling exponentCskd
~k−2. Also with regard to the degree correlation,k2/k~k−1

approximately holds except for
small k.

C. Gaussian distribution

The Gaussian distribution can be a standard null hypoth-
esis on the weight distribution. Since it does not have the
analytical form ofF−1sxd, we perform straightforward nu-
merical simulations withu=6 and u=10 to examinepskd,
Cskd, andk2/k. The Gaussian distribution is assumed to have
mean 0 and standard deviation 1.7 to roughly approximate
the logistic distribution withb=1, which has been used in
Sec. III B. In spite of different asymptotic decay rates of
fswd, Fig. 2 indicates thatpskd, Cskd, andk2/k for the Gauss-
ian distribution do not differ so much from those for the
logistic distribution, disregarding the crossover points. This
implies a rather universal existence of power law behavior,
which is discussed in more detail in Sec. IV.

D. Pareto distribution

The Pareto distribution, which is equipped with an inher-
ent power law, is often observed in, for example, distribu-
tions of capitals and company sizes[31]. It is defined by

fswd =
a

w0
Sw0

w
Da+1

sw ù w0d, s22d

where a.0 and w0.0. Nontrivial networks form if we
chooseu.2w0. We obtain

Fswd = 1 −Sw0

w
Da

sw ù w0d, s23d

F−1sxd =
w0

s1 − xd1/a . s24d

Whenwøu−w0, it is straightforward to derive

k = nS w0

u − w
Da

, XnS w0

u − w0
Da

ø k , nC , s25d

w = u − Sn

k
D1/a

w0, s26d

pskd =
n1/a

S u

w0
k1/a − n1/aDa+1 . s27d

A total of

E
u−w0

`

nfswddw= nS w0

u − w0
Da

s28d

vertices with wùu−w0 are condensated atk=n. When
nsw0/uda!k,n, pskd can be approximated by a power law

pskd > Sw0

u
Da+1

n1/ak−sa+1d/a. s29d

By modulatinga, we can produce a scale-freepskd with ar-
bitrary g=sa+1d /a.1. An observedg in turn serves to es-
timatea and fswd, which may underlie, for example, fractal
dynamics of economical quantities, as well as network for-
mation. The scaling exponent forpskd differs from that for
fswd, and a faster decay offswd with a largera yields a
slower decay ofpskd. Numerical results forpskd are shown
in Fig. 3(a) with w0=1. We set sa,ud=s0.5,100d (open
squares) and (0.5, 500) (open circles), yielding g=3, and
sa,ud=s1,100d (closed squares) and(1,500) (closed circles),
resulting ing=2. The results are consistent with the theoret-
ical prediction based on Eq.(27) (solid lines) and also with
Eq. (29) (dotted lines).

FIG. 3. Numerical results for(a) pskd, (b) Cskd, and(c) k2/k for
the Pareto weight distributions withn=50 000 andw0=1. We set
a=0.5, u=100 (open squares), a=0.5, u=500 (open circles), a=1,
u=100 (closed squares), and a=1, u=500 (closed circles). In (a),
pskd estimated by Eq.(27) and the by power law approximation in
Eq. (29) are also shown with solid lines and dotted lines,
respectively.
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Substituting Eqs.(23), (24), and (27) into Eqs. (6), (7),
and (9), respectively, yields

Cskd =
n

k
+ Sn

k
−

n2

k2D1 w0

u − w0Sn

k
D1/a2

a

−
n2a

k2 Sw0

u
DaE

u/fu−w0sn/kd1/ag

sk/nd1/asu/w0d
xa−1 − Sw0

u
Da

x2a−1

sx − 1da+1 dx

=
n

k1 w0

u − w0Sn

k
D1/a2

a

+
n2a

k2 Sw0

u
D2aE

sn/kd1/asw0/ud

1−sn/kd1/asw0/ud

3y−as1 − yd−a−1dy, k . nS2w0

u
Da

, s30d

Cskd = 1, nS w0

u − w0
Da

ø k ø nS2w0

u
Da

s31d

and

k2

k
= n51 −

na

k
Sw0

u
DaE

u/fu−w0sn/kd1/ag

u/w0
xa−1 − Sw0

u
Da

x2a−1

sx − 1da+1 dx6
=

n2

k
S w0

u − w0
Da

+
n2a

k
Sw0

u
DE

w0/u

1−sn/kd1/asw0/ud

3y−as1 − yd−a−1dy, s32d

where we sety=x−1. The integral in Eq.(30) is nonnegative
and does not depend so much onk when k tends large.
Therefore,Cskd~k−1 is expected based on the first term,
which is consistent with the numerical results fork larger
than the crossover valuek>ns2w0/uda [Fig. 3(b)]. The scal-
ing law Cskd~k−1, as opposed toCskd~k−2 for the exponen-
tial fswd, rather agrees with real data[12,13].

Similarly, Eq. (32) and the simulation results shown in
Fig. 3(c) suggestk2/k~k−1 for a sufficiently largek. Equa-
tions (30) and (32) show that the scaling exponents of both
Cskd andk2/k do not depend ong or a.

E. Cauchy distribution

For the Cauchy distribution

fswd =
1

ps1 + w2d
sw P Rd s33d

we obtain

F−1sxd = tan
p

2
s2x − 1d, s34d

w = u − tan
p

2
S1 −

2k

n
D , s35d

pskd =
1

n

1 + tan2
p

2
S1 −

2k

n
D

1 +Su − tan
p

2
S1 −

2k

n
DD2 s0 ø k ø nd.

s36d

Numerically obtainedpskd, Cskd, andk2/k together with
Eq. (36) are shown in Fig. 4 foru=100 (open squares) and
for u=500 (open circles). According to Eq.(36), the mono-
tonicity of pskd is marred becauseps0d=psnd=1/n. A par-
ticular choice ofu=0 even gives rise to the uniformpskd. For
generalu, however,pskd has the unique maximum and mini-
mum betweenk=0 andk=n as shown in Fig. 4(a) by solid
lines. Existence of the characteristic vertex degree corre-
sponding to the peak ofpskd is a feature shared by random,
regular, and small-world networks[1,2]. The peak appears

FIG. 4. Numerical results for(a) pskd, (b) Cskd, and(c) k2/k for
the Cauchy weight distribution withn=50 000 withu=100 (open
squares), u=500 (open circles), and the one-sided Cauchy distribu-
tion with u=100 (closed squares), and u=500 (closed circles). In
(a), the analytically estimatedpskd for the Cauchy distribution[Eq.
(36)] and for the one-sided Cauchy distribution[Eq. (38)] are also
shown by solid and dotted lines, respectively.
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because of the unimodality offswd, which yields the plateaus
of pskd in the case of the logistic and Gaussian distributions
(see Secs. III B and III C). Nonetheless, as for the Pareto
distribution with a=1, which has the same asymptotics
fswd~w−2 as the Cauchy distribution, approximate power
laws with g=2 are observed for intermediate values ofk.

The one-sided Cauchy distribution on the half line facili-
tates a fairer comparison with the Pareto distribution that
also has the lower cutoff ofw. We define the one-sided
Cauchy distribution by

fswd =
2

ps1 + w2d
sw ù 0d. s37d

Then it holds thatF−1sxd=tansp /2dx and

pskd =
2

n

1 + tan2
p

2
S1 −

k

n
D

1 +Su − tan
p

2
S1 −

k

n
DD2 s0 ø k ø nd. s38d

Figure 4(a) shows the numerical results forpskd with u
=100(closed squares) andu=500(closed circles), accompa-
nied by the prediction by Eq.(38) (dotted lines). The ap-
proximate power law holds even fork close to n, which
contrasts with the case of the standard Cauchy distribution.
The behavior ofCskd andk2/k shown in Figs. 4(b) and 4(c),
respectively, resembles that for the Pareto and standard
Cauchy distributions. In Secs. III A and III B, we have in-
spected consequences of using exponentialfswd and logistic
fswd. Including the comparison between the Pareto and
Cauchy distributions examined here, the effect of a lower
cutoff of fswd does not seem so prominent.

IV. WHY POWER LAW WITH g=2?

The power law ofpskd with g=2 seems universal for
thresholding mechanisms not only because a wide class of
fswd generates it but also owing to its stability. To be more
specific, weights can be the vertex degrees themselves, as is
implied by the BA model. Indeed,k can represent how cen-
tral or influential a node is[22]. Then let us iterate our con-
struction algorithm to simulate an evolving but not growing
network with dynamicfswd and pskd. Let us simulate a dy-
namical network withn=50 000. Initially, w is uniformly
distributed on[0, 1], and the thresholding algorithm deter-
mines k. Then we setw=k/n+j, wherej is the Gaussian
white noise with standard deviations=0.2, and iterate the
dynamics. The numerical results are shown in Fig. 5 with
u=1. In the early stages[crosses in Fig. 5(a)], k is distributed
more or less uniformly since a uniformfswd yields a uniform
pskd just accompanied by a singularity atk=0 ork=n, which
is easily checked with Eq.(3). As the iteration goes on, how-
ever, pskd converges to a power law withg=2. Similarly,
Cskd~k−1 andk2/k~k−1 are eventually realized as shown in
Figs. 5(b) and 5(c). Althoughu too far from 1 or excessively
small s results in a complete or totally disconnected net-
work, pskd~k−2 emerges robustly against changes inuù1
ands.0.15 unless noise is not extremely large.

By the analogy of the Pareto case, if a power law with
gÞ2 is obtained,g will be transformed by the mapg=a
+1→g=sa+1d /a, namely, g→g / sg−1d. This map has a
unique positive fixed pointg=2. Actually, the map is neu-
trally stable atg=2 with eigenvalue −1, which implies os-
cillation. This argument does not directly support but may
underlie the emergence ofpskd~k−2. In addition,pskd con-
verges topskd~k−2 stably with respect to the choice of initial
distribution fswd. It is in a striking contrast with the case of
competitive growing networks with vertex weights, which
generatepskd~k−g only for a limited class of weight distri-
butions [8]. More broadly, general cooperative networks in
which interactions of multiple vertices leads to interconnec-
tion [18] may have stable power laws, possibly withgÞ2.
As an example, we can assumew of the next generation to be
proportional tokxsx.0d, which is often the case in real net-
works [22]. In this case, it is easy to show that the neutrally
stable fixed point of the abovementioned map isg=1+Îx.
Our model, which yieldsg=2, sets a baseline example of
this class.

FIG. 5. The evolution of(a) pskd, (b) Cskd, and(c) k2/k with the
repetitive thresholding. We setn=50 000 andu=1. The data shown
are those after 1(crosses), 8 (open squares), 10 (closed squares), 12
(circles), and 15(triangles) rounds.

ANALYSIS OF SCALE-FREE NETWORKS BASED ON… PHYSICAL REVIEW E 70, 036124(2004)

036124-7



In terms of clustering, we have observed the discrepancy
in the scaling lawCskd~k−2 for the exponential, logistic, and
Gaussian distributions withCskd~k−1 for the Pareto, Cauchy,
and one-sided Cauchy distributions. The Pareto distribution
with a=1 results inpskd~k−2, which coincides with the scal-
ing law for the exponential type offswd. It means that the
consistency inpskd for different choices offswd does not
necessarily mean the consistency in network structure. The
difference between the exponential tail and the power-law
tail of fswd is likely to cause qualitative discrepancy inCskd.
On the other hand, the degree correlation behaves similarly
in all the examined cases, namely,k2/k~k−1. From a dy-
namical point of view,Cskd evolves from a general form to
Cskd~k−1, which is realistic[12,13]. This scenario matches
the simulated dynamics shown in Fig. 5(b). In this case,Cskd
is initially just large for most vertices and converges to
Cskd~k−1, which reflects the eventual separation of the net-
work into the core and the peripheral part.

Boosted by the original BA models, the power law ofpskd
with g=3 has been pronounced in the first place[2,3]. More-
over, in percolation and contact processes on scale-free net-
works, the critical value of the infection rate is extinguished
if gø3 [32]. These results suggest relevance of the power
law with g>3. However, real scale-free networks have more
dispersed values ofg [2], and many models have been pro-
posed so thatg is tunable somewhere between 2 and`
[4,6,8–14,16,22,33]. In contrast, the present model with in-
trinsic vertex weights(also see Refs.[18,20]) and another
type of thresholding model[33] broadly yield g=2. We
speculate thatg=2 is another general law. In the parameter
space ofg, g=2 as well asg=3 often emerges as phase
transition points of network characteristics[4,6,10,21,22].
Theg=2 law may be common to cooperative models such as
those with thresholding, while theg=3 law underlies the
competitive models represented by network growth with
preferential attachment. Actually, many real networks in the

scale-free regime haveg close to 2 rather than to 3[2]. Some
networks such as the world wide web, e-mail networks, lan-
guage networks, and ecological networks haveg even
smaller than 2[34]. Some of these observations can be un-
derstood as small deviations from ourg=2 law, which may
be explained by proper modification of the model[18,20],
for example, by introducing stochastic thresholding[21,23],
nonlinear relations betweenk andw [22], or many-body in-
teractions.

V. CONCLUSIONS

We have shown that the thresholding model, which is in
the class of networks with intrinsic vertex weights, generates
scale-free networks withg=2, largeC, and smallL for a
broad choice of weight distributions. Even if we start with an
arbitrary weight distribution,pskd~k−2 andCskd~k−1 are fi-
nally obtained. The competitive mechanisms, such as net-
work growth with preferential attachment or hierarchical
structure, are not mandatory for generating realistic networks
[18]. The cooperative thresholding mechanisms also result in
desired properties rather generally, and they yield somewhat
different characteristics from those of growing types of net-
works. In addition, they allow plausible physical interpreta-
tions, have core-peripheral structure, are equipped with inho-
mogeneity as in real networks, and facilitate analytical
calculations[18,20].
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