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Analysis of scale-free networks based on a threshold graph with intrinsic vertex weights
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Many real networks are complex and have power-law vertex degree distribution, short diameter, and high
clustering. We analyze the network model based on thresholding of the summed vertex weights, which belongs
to the class of networks proposed by Caldaretlal. [Phys. Rev. Lett.89, 258702(2002]. Power-law degree
distributions, particularly with the dynamically stable scaling exponent 2, realistic clustering, and short path
lengths are produced for many types of weight distributions. Thresholding mechanisms can underlie a family
of real complex networks that is characterized by cooperativeness and the baseline scaling exponent 2. It
contrasts with the class of growth models with preferential attachment, which is marked by competitiveness
and baseline scaling exponent 3.
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I. INTRODUCTION have been proposed. These models largely yield more flex-
ible values ofy, which is restricted to 3 in the original BA

Complex networks have drawn increasing interests irconstruction. Furthermore, modifications to reinforce the
various disciplines. Recent studies have revealed that neglustering property, which the BA model lacks, have also
works in the real world are far from fairly regular or totally been done. A simple solution is to embed a triangle-
random. Particularly, real networks have small average shorggenerating protocol into the BA modgl4,15. Introduction
est path length and high clustering at the same time, whereas$ a node deactivation procedure also enhances clustering
conventional graphs such as lattices, trees, or the origingfl6,17. Yet another solution is appropriately designed ver-
random graphs are not equipped with these properties at thgons of the hierarchical models mentioned abih@&12,13.
same timg[1,2]. In short, largeC, smallL, and scale-fre@(k) can be simul-

The average path length is denotedlbyand it more or  taneously realized by the modified BA models or by the hi-
less characterizes the diameter of the graph. The average efarchical construction. Both models rely on the combined
the shortest path length over all the pairs of vertices definesffects of network growth and the preferential attachment,
L. The clustering property can be locally evaluated by thealthough preferential attachment is not explicitly imple-
vertex-wise clustering coefficient, which is the number ofmented in the hierarchical networks.
connected triangles containing the vertex in question, nor- Nevertheless, every network is not apparently growing.
malized by the maximal number of possible triangles. If theNetworks can experience structural changes that are rela-
vertex degree, or the number of edges emanating from fively much faster than network growth or aging processes.
vertex, isk, the normalization constant becomié&-1)/2.  In economical networks of companies, friendship networks,
The clustering coefficien€ of the whole graph is the local peer-to-peetP2P networks, and networks of computer pro-
clustering coefficient averaged over all the vertices. Wattgyrams, for example, it seems natural that agents change their
and Strogatz proposed the small-world networks that simuleonnectivity without significant entries or leaves of mem-
taneously realize larg€ and smallL [1]. However, the bers. Therefore, there has been a need for developing a non-
small-world networks are short of the scaling property ofgrowing algorithm to generate realistic networks. In this re-
vertex degree distribution denoted Ipyk). Indeed, not all gard, Caldarelliet al. proposed a class of networks whose
but many real networks satisfp(k)ck™ typically with  connections are determined by interactions of vertices that
2<y<3[2]. Then, Barabasi and AlbefBA) developed the are endowed with intrinsic weightl8-20. The vertex
network model, which dynamically generates scale-free netweight is considered as a type of fitn¢8s18,21-23 which
works with y=3 [2,3]. The fundamental devices in the BA describes the propensity of vertices to gain edges. It can be
model are the network growth and the preferential attachinterpreted as money, social skills, or personal influence in
ment; vertices are added one after another to the networlsocial networks, activeness, the value of information at-
and edges are more prone to be connected to vertices withched to a vertex, concentration or mass of some ingredients
largerk. Various scale-free networks including extensions ofin chemical or biological networks, or the vertex degree it-
the BA model, such as networks with dynamic edge rewiringself. Surprisingly, scale-free topology spontaneously emerges
[4,5], those with nonlinear preferential attachmg@it, those  even with weight distributions without power lay8,2Q.
with weights on edge$7], the fitness mode[8], and the In this paper, we analyze a subclass of their model that is
hierarchically and deterministically growing modgB-13 based on a deterministic thresholding mechanism. The con-
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nectivity between a pair of vertices is determined by whether
the sum of the weights of the pair exceeds a given threshold.
Actually, this class of networks is equivalent to the threshold
graph in the graph theoretical contg2t], and we also dis- gnd
cuss its consequence.

Despite the stochasticity and certain continuity in the real
world, thresholding that is more or less “hard” is often ob- _
served. Although the correspondence to our framework is not dk ~ Kk
perfect, a common form of thresholding is that an agent on a nf(f'l(l - —))
vertex determines its action or state based on the number of n
neighbors taking a specific state. For example, propagation Because of the one-to-one correspondence betweer
of riots, fashions, and innovations are considered to be&v represented by Eq2), the vertex-wise cluster coefficient
equipped with thresholding mechanisri25]. These phe- depends only ok, which simplifies the analysis. We denote
nomena have been simulated by dynamic models, such as thteby C(k), and the scaling lawz(k) k™! is often observed in

f(w)dw =n[1-F(0-w)] (0<k=<n)

I o

2)

p(k) = f(w) (3

threshold model for social decisigg5], the minority games

real and modeled network&0,12,13,15-17,38The cluster-

[26], the threshold voter models, and the threshold contadhg coefficient of the entire graph is given b

processe$27].

In this paper, we show that a baseline power lpk)
o« k™ with y=2 rather than one withy=3 [3] dominates this
class of models and explore its cause and consequence.
Sec. Il, we follow Refs.[18,20 to explain the network

=[5 C(k)p(k)dk To calculateC(k) [20], let us consider a ver-
texv with degreek=n[1-F(6-w)]. The density of the num-
ber of neighbors with degrek’=n[1-F(6-w’)] becomes
m/v’) if w=60-w and O otherwise. With such a neighbor
denoted by’, the number of connected triangles comprising

model, and calculate fundamental quantities such(&s C,  , ,» and another neighbor ofis obtained as follows. When
and the measure for degree correlation. The results in Sec. ¥ >k a new neighbor o is also a neighbor of’ because
are applied to various weight distribution functions in Sec.y' = . The number of triangles in this case is

[, extending the results for the exponential distributions in

Refs.[18,20. Consequently, we find that the power law is (n=2[1-F(O-w]=n1-FO-w]=k. (4
observed for a wide class of weight distributions. In Sec. IVy\yhenk’ <k we have

we argue that the power law witp=2 is rather ubiquitous in ’

the sense that it is a unique stable degree distribution when a * S

network evolves without growth. L_W/ nf(w’)dw’=n[1-F(6-w")] (5

triangles. We obtail€(k) by the sum of Eqs(4) and(5) that

is weighted by the degree distribution. The normalization is
Let us start with a set af verticesV={v,,v,, ... v,}. As  given by dividing it byk(k-1)/2 and by another factor of 2,

introduced in Refs[18,20, we assign to each (1<i<n)a  as each triangle is counted twice. Consequently, we have for

weightw; e R that is taken randomly and independently dis-W>6/2, ork>n[1-F(6/2)]

Il. MODEL

tributed as specified by a given probability distribution func- 1 1 % w
tion f(w) on R. The weight quantifies the potential for the C(k)\==—— J kf(w")dw' +f n[1-F(6
vertex to be linked to other verticg8,18. We assume that 2k(k=1)/2 | Jw -w

the weight permits additive operation. Actually, the multipli-
able weightg18,20,21,28 can be easily reduced to the ad-

—W')]f(W’)dW’}
ditive ones by taking the logarithm o¥. Let

oeleloe )

F(w) = JW f(w")dw' (1)

pe the cu_mulative_ distribut_ion function, satisfying “ (1 —k—/)p(k’)dk’}/(k/n)z.
lim,,__.F(w)=0 and lim,_..F(w)=1. The set of edgeE is n

defined by the thresholding rule with threshold E (6)
={(vi,v));Wj+w;=6,i # j}. We focus on this specific case of

more general frameworkl8,20. This renders more math- Whenw= 6/2 ork<n[1-F(6/2)], we simply end up with
ematical analysis and allows us to explore the consequence k=1 7)
of vertex interactions based on intrinsic weights. The degree '
distribution p(k), where O<k<n is the vertex degree, is The vertices withC(k)=1 forms the peripheral part of the
readily calculated with the use of continuum approximationnetwork that is connected to the cliquish core with smaller

f n[1-F(6-FX(1-k/n))]

corresponding to the thermodynamic limit— ). How-
ever, we confine ourselves to a finiteand the limitn— oo

C(k), as schematically depicted in Fig. 1. The core consists
of the vertices withw= 6/2, and it is similar to the winner-

should be understood as approximation. Putting the uppeake-all phenomenon found in growing network models

limit of k equal ton instead ofn—1, we obtain

[6,8]. However, more than a single winners are allowed in
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larger w W >= 6/2 Il. EXAMPLES
In this section, we calculate the quantities introduced in

Sec. Il for some weight distributionf{w).
Q () |clique
NN

A. Exponential distribution

Let us begin with recapitulating the case of exponential
weight distribution with deterministic thresholdirid8,2Q.

We set
O f(w)=xe™ (0<w). (10

smaller w W< 6/2 Assuming 6>0 so that the generated networks are not
trivial, for w<< 6, combining Eqgs(3) and(10) results in

FIG. 1. Schematic diagram of the threshold model. v
ne

. . . o p(k) = —5— (neM<k=n). (17)
this model. This core-peripheral separability is a rigorous k
property of the threshold gragB4]. It is also consistent with

the property of real networks thél(k) saturates for smak ~ 1he scale-free distributiop(k) k™ appears from random

[12,13 and that vertices in the core are densely connecteld/€19Nts whose distribution has nothing to do with power law,

[29]. which is a main claim of Ref[18]. A total of [;nf(w)dw

Regarding the network size, real networks are small witi=ne ™’ vertices are condensated letn and form a core

L proportional to Im or even lesg1-3). Our network has [18,20. In general, this sort of condensation occurs vyhen

L<2 as far as it is free from isolated vertices. This is be-f(W) has a lower cutoff. However, the number of vertices

cause any pair of vertices can be connected by a path dfith k=n can be made arbitrarily small by setting large,

length 2 passing a vertex with a sufficiently large weight is inand this feature is not so essential. We numerically simulate

the cliquish parisee Fig. 1 One might ascribe this ultras- & network withn=50 000, which is fixed throughout the pa-

mallness to the fact that the mean degree is of the ordey of Per,A=1, and#=10. Setting\=1 does not cause the loss of

indicating too many edges per vertex. However, the meagenerality because only the multiple bfand 6 appears in

degree can be kept finite by scaligaccording to the in- Ed. (11) and the following quantitie$Egs. (12) and (15)].

crease im, as discussed in Sec. Il A. It turns out that this Figure 2a) shows that numerical resultsrossep are pre-

modification does not chande dicted by Eq.(11) (lineg) sufficiently well[18,20. In regard
The correlation between the degrees of adjacent vertice® clustering, Eq(6) yields

also characterizes network®]. Actually, degree correlation

can be positive or negative depending on the type of net-

work, as measured for real data using the degree of assortaC(k) =y n° _ k _

tivity [30]. Here we explain a simpler quantity to gain insight Pe w<1 tAO+2 lnﬁ) (ne™2<k<n)

into the degree correlatiofb,16,17, which was first ana-

lyzed in Ref.[20] for the present type of network model. We

denote byk; the sum of the degrees ofs neighbors, which  \yhich agrees with the numerical results in Figoj2(crosses

has degreé. If the de.gree is u_nqorrelatekdzlk, or the aver- (originally derived in Ref.[20]). Equation(12) shows that

age degree of the ne|ghpors, is independentafk. For the C(k) nearly decays according to the power law with expo-

threshold model, we derive nent 2. However, analysis of real networks, such as meta-
bolic networks [12], actor networks, semantic networks,

1 (neM < k< ne™?)
2

(12

o ’ ’ world wide webs, and the Interngt3], suggestC(k) <k,
kff nf(w")n[1 -F(6-w')]dw which is also supported by some models
brw [5,10,12,13,15-17,38For this particular example, we have
,) K n Kk’ . a larger scaling exponent. Actually, the general power-law
=n E‘f . 1‘; p(k)dKk . (8)  form C(k)xk™” (y'>0) is also reported in model studies
N1-F(e-F1-km)] [5,13,15 and in data analysif5]. The clustering coefficient
of the whole network is
Accordingly, |
4 5+3\0
C= f C(kp(k)dk=1 - —e M2 - =———g™2\0,
k2 1]“ ne—)\H 9 9
—=nl-- (n=K)pk)dK ¢, (9)
k KJ n1-F(o-F 1k (13
In real networks, the average vertex degree denoted)og
which generally depends da independent oh on a large scal§l—3]. Since
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some social and biological network®,5,30. More intu-

itively, disassortativity of our model is a natural consequence
of the core-peripheral structure. Equatidb) and Fig. 2c)
= (crosses and solid lingshow that there is an approximate
5 scaling relatiork,/kock™* [17].
B. Logistic distribution
The logistic distribution is often used, for example, in
statistics and economics. Except the discrepancy in the
k asymptotic behavior, it can be used as a more or less appro-
priate substitute for the Gaussian distribution. The logistic
distribution is more tractable because it has an analytic form
of F(w). For a given3> 0, the logistic distribution is defined
by
3 AW
= e
G fw)=—Lo 16
W)= 7 e (16)
b With
0.0001 : - :
100 1000 10000 - )
y FW) =T 5 WeR) (17
100000 1 (1
g Fix)=-= In(——l), (18)
B X
x < ne?w-o)
> 1000 } k= T+ (19
1 k
10 . . W:6+Elnm (20)
1 100 10000
k applied to Eq(3), we obtain
B0
FIG. 2. Numerical results fofa) p(k), (b) C(k), and(c) ko/k p(k) = ne’ (0<k<n). (22)
using the networks of size=50 000 generated by thresholding. 2 il k\2
The weight functions are taken to be exponential withl, /=10 k|1+e

(crossey logistic with 8=1, #=6 (open squargsand 8=1, =10

(open circley Gaussianmean 0 and standard deviation jlwith ~ The power lawp(k) =k 2 is again manifested dsapproaches
6=6 (closed squargsand Gaussian with=10(closed circles The  n. If 1<[(n-k)/k]e??, k is relatively small, andp(k)
theoretical predictions are shown for the exponential distribution= ne3‘9/(n—k)2 does not strongly depend énThe crossover

(solid lineg and the logistic distributiongdotted lines. from this regime to the power-law regime, which is found in
real data[12,13 and derived by scaling ansatz theqfyp],
(Ky=eM(n+\0), (14)  occurs around %[(n-k)/kle?’, or k=[n/(e®’+1)]. A

o . o . 1 ) ) larger value of6 provides a wider range & in which the
flmte (k) is maintained by setnng;k In n. With this scal- power law holds. In this range, E€L6) is of course approxi-
ing of 6, our model produces a finite value @fthat does not  mated by the exponential distribution represented by(EQ).
decay to O in the limitn—oo. This result agrees with real \yiih B=\. For k small relative ton/(e?+1), f(w), with a
data[2], and C is actually nonvanishing for more general correspondingly smaliv, does not decay exponentially or

flw). . even monotonically. Therefore, whéris small, the number
Using Eq.(9), the average degree of neighbors becomesef vertices with degred is not large enough to support the
as shown in Ref[20], power law.
k, nleM K We compare in Fig. @) the numerical results fof=6
o) \LFAerine ). (15  (open squargsand #=10 (open circlegwith the correspond-

ing theoretical results in Eq21) (dotted lines. We have set
Since Eq.(15) is decreasing irk, the network is disassorta- B=1 without losing generality for the same reason as in Sec.
tive [30] with negative degree correlation, which is a prop-Ill A. The effect of § on the position of crossover is clear in
erty shared by some scale-free network mo¢®)$6,17 and  the figure. Since the integrals in Eq$) and (9) cannot be
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explicitly calculated, numerically evaluate@(k) and k,/k
with the same parameter values are shown in Figs. &d
2(c), respectively. Similar to the case of the exponential dis-
tribution, the crossover from the plateau to the power law is
observed forC(k) with the same scaling exponer@(k)
k™2, Also with regard to the degree correlatidg/ko k™
approximately holds except for
small k.

C. Gaussian distribution

The Gaussian distribution can be a standard null hypoth-
esis on the weight distribution. Since it does not have the
analytical form of F~1(x), we perform straightforward nu-
merical simulations withd=6 and #=10 to examinep(k),
C(k), andk,/k. The Gaussian distribution is assumed to have
mean 0 and standard deviation 1.7 to roughly approximate
the logistic distribution with@=1, which has been used in
Sec. llI B. In spite of different asymptotic decay rates of
f(w), Fig. 2 indicates thap(k), C(k), andk,/k for the Gauss-
ian distribution do not differ so much from those for the
logistic distribution, disregarding the crossover points. This
implies a rather universal existence of power law behavior,

107
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1000 10000

which is discussed in more detail in Sec. IV.

D. Pareto distribution

The Pareto distribution, which is equipped with an inher-
ent power law, is often observed in, for example, distribu-

tions of capitals and company sizg&l]. It is defined by

a+l
f(w):\i(‘%)) W= wp), 22)

where a>0 and wy>0. Nontrivial networks form if we

choosef>2w,. We obtain

F(w):l—(‘%’)a(wzwo), 23)
-1 _ WO
F0= o (24)

Whenw= 6-w, it is straightforward to derive

k:n( Wo )a, (n( Wo )as k< n), (25)
H_W 0_W0

n 1l/a
W= 0—<E> Wo, (26)
r]1/a
p(k) = P el (27)
(_klla _ n1/a>
Wo
A total of
® a
f nf(w)dw= n( o ) 28)
6-wg —Wp

vertices with w=6#-w, are condensated at=n. When

10000 ¢

1000 ¢

100 ¢

100 1000 10000
k

FIG. 3. Numerical results fog) p(k), (b) C(k), and(c) k,/k for
the Pareto weight distributions with=50 000 andwy=1. We set
a=0.5, /=100 (open squargsa=0.5, /=500 (open circle§ a=1,
0#=100 (closed squargsanda=1, #=500 (closed circles In (a),
p(k) estimated by Eq(27) and the by power law approximation in
Eq. (29 are also shown with solid lines and dotted lines,
respectively.

W, atl
p(@é(f) ntak-(@rbia (29)

By modulatinga, we can produce a scale-freék) with ar-
bitrary y=(a+1)/a>1. An observedy in turn serves to es-
timatea and f(w), which may underlie, for example, fractal
dynamics of economical quantities, as well as network for-
mation. The scaling exponent f@(k) differs from that for
f(w), and a faster decay dfiw) with a largera yields a
slower decay ofp(k). Numerical results fop(k) are shown

in Fig. 3@ with wy=1. We set(a,d)=(0.5,100 (open
squares and (0.5, 500 (open circley, yielding y=3, and
(a,6)=(1,100 (closed squargesand(1,500 (closed circley
resulting iny=2. The results are consistent with the theoret-
ical prediction based on E@27) (solid lineg and also with

n(wy/ #)2<k<n, p(k) can be approximated by a power law Eg. (29) (dotted lines.
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Substituting Eqs(23), (24), and (27) into Egs.(6), (7), 107!
and(9), respectively, yields
n (n n? W, a 107
C(k):—+(———2> —01/ —_ |
k \k k n\-e =3
6'““<E> < 107
a-1_ Vl) 2 2a-1
n2a Wo a (k/n)lla(ﬁlwo) X ( 0) X 10—10
v f w1 X
0/ Joro-woiorey  (X=1)

n Wo a n2a<%>za fl‘(n/k)lla(wo/ﬁ)
(

p— A — + [
k n 1l/a k2 0 1a
0—wal — n/k) 2w/ 0)
“b<k)
2wp |2
Xy 31-y) @y, k> n<—0> , (30 <
0 O Eh‘
0.01 | B
_ W |\ 2w | b
C(k) =1, n(a_w()) sks= n( P ) (31 0.001 . . .
100 1000 10000
and k
W, a
xa1l_ (_0> x2a-1
Ky naf wp )2 (%" 0 10000 }
—“==n|l-—|— a1 dXx
k k\ 6/ Jopwgmoreg  (x=1)
4
n2 ( Wo )a n2a<Wo> Jl—(n/k)lla(wola) > 1000
=— +—| —
k\6-w kK \ 60/ Jwyo
Xy(1-y) = dy, (32) 100 +5 . ,
where we sey=x"1. The integral in Eq(30) is nonnegative 100 1000 10000
and does not depend so much krwhen k tends large. k
Therefore, C(k) <kt is expected based on the first term, FIG. 4. N ical s 4 Q. (b K dee) ko /k §
which is consistent with the numerical results follarger 4. Numerical results fo@) p(k), (b) C(k), and(c) k,/k for

- the Cauchy weight distribution with=50 000 with =100 (open
.than the CrOSS(z\ller value=n(2w,/ 6)° [F_Ig' Ab)]. The scal- squarey =500 (open circle, and the one-sided Cauchy distribu-
mg law C(k) k™, as oppqsed te(k) k™ for the exponen- tion with #=100 (closed squargsand #=500 (closed circles In
tial f(w), rather agrees with real dafa2,13. (a), the analytically estimatepi(k) for the Cauchy distributiofiEq.
Similarly, Eqg. (32) and the simulation results shown in (36)] and for the one-sided Cauchy distributifffq. (38)] are also
Fig. 3(c) suggestk,/kock™* for a sufficiently largek. Equa-  shown by solid and dotted lines, respectively.
tions (30) and(32) show that the scaling exponents of both

C(k) andk,/k do not depend ory or a. 1 +tar? 7_7(1 B %)
E. Cauchy distribution p(k) = n ( 7-r< 2k>>2 O=<k<n).
1+({6-tan—|1-—
For the Cauchy distribution 2 n
(36)
f(w) = (1 +w?) (weR) (33 Numerically obtainedp(k), C(k), andk,/k together with

Eq. (36) are shown in Fig. 4 fow=100 (open squargsand
we obtain for =500 (open circles According to Eq.(36), the mono-
tonicity of p(k) is marred becausp(0)=p(n)=1/n. A par-
ticular choice ofg=0 even gives rise to the uniforpik). For
generald, howeverp(k) has the unique maximum and mini-
mum betweerk=0 andk=n as shown in Fig. &) by solid
lines. Existence of the characteristic vertex degree corre-
W= 60— tanz(l _ﬂ‘) (35) sponding to the peak gi(k) is a feature shared by random,
2 n regular, and small-world network4,2]. The peak appears

Fi(x) = tang(ZX - 1), (34)
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of p(k) in the case of the logistic and Gaussian distributions
(see Secs. Il B and Il £ Nonetheless, as for the Pareto
distribution with a=1, which has the same asymptotics —
f(w)w™ as the Cauchy distribution, approximate power =
laws with y=2 are observed for intermediate valueskof

The one-sided Cauchy distribution on the half line facili-
tates a fairer comparison with the Pareto distribution that
also has the lower cutoff ov. We define the one-sided
Cauchy distribution by

because of the unimodality éfw), which yields the plateaus i
107

107 |

_ 2
T (1 +wR)

Then it holds thafF~Y(x) =tan(w/2)x and

f(w) (w=0). (37

K x
1+tar?7—27<1—a) ©
p(k) = — 5 (0<k=n). (39
n T k
1+|0-tan—(1-— b
2 n 0.0001 : .
100 1000 10000

Figure 4a) shows the numerical results fqu(k) with 6
=100(closed squargsand 6=500(closed circley accompa-
nied by the prediction by Eq38) (dotted line$. The ap- 100000T

proximate power law holds even fde close ton, which
contrasts with the case of the standard Cauchy distribution.
The behavior ofC(k) andk,/k shown in Figs. &) and 4c),
respectively, resembles that for the Pareto and standard
Cauchy distributions. In Secs. Il A and Ill B, we have in-
spected consequences of using exponefti@l and logistic
f(w). Including the comparison between the Pareto and
Cauchy distributions examined here, the effect of a lower 10 - .
cutoff of f(w) does not seem so prominent. 1 100 10000

k

FIG. 5. The evolution ofa) p(k), (b) C(k), and(c) k,/k with the

The power law ofp(k) with y=2 seems universal for repetitive thresholding. We sat=50 000 and¥=1. The data shown
thresholding mechanisms not only because a wide class @fe those after {crossey 8 (open squargs10(closed squargs12
f(w) generates it but also owing to its stability. To be more(circles, and 15(triangleg rounds.
specific, weights can be the vertex degrees themselves, as is
implied by the BA model. Indeed can represent how cen-
tral or influenti_al a node_ i$22]. Then let us iterate our con- +1—y=(a+1)/a, namely, y— y/(y—1). This map has a
struction a_lgorlthm to simulate an evolving k_)ut not growing unique positive fixed point=2. Actually, the map is neu-
network with dynamicf(w) andp(k). Let us simulate a dy- 3|1y stable aty=2 with eigenvalue -1, which implies os-
namical network withn=50 000. Initially, w is uniformly — cjjjation. This argument does not directly support but may
distributed on[0, 1], and the thresholding algorithm deter- ynderlie the emergence @ik)=k™2. In addition, p(k) con-
minesk. Then we sew=k/n+§, where¢ is the Gaussian yerges tap(k) k™2 stably with respect to the choice of initial
white noise with standard deviation=0.2, and iterate the (djstribution f(w). It is in a striking contrast with the case of
dynamics. The numerical results are shown in Fig. 5 withcompetitive growing networks with vertex weights, which
6=1. In the early stagggrosses in Fig. @], k is distributed  generatep(k) <k~ only for a limited class of weight distri-
more or less uniformly since a uniforfiw) yields a uniform  pytions [8]. More broadly, general cooperative networks in
p(k) just accompanied by a singularitylet 0 ork=n, which  which interactions of multiple vertices leads to interconnec-
is easily checked with Eq3). As the iteration goes on, how- tion [18] may have stable power laws, possibly wigh 2.
ever, p(k) converges to a power law with=2. Similarly,  As an example, we can assum®f the next generation to be
C(k) k™ andky/keck™* are eventually realized as shown in proportional tok*(x>0), which is often the case in real net-
Figs. b) and %c). Although 6 too far from 1 or excessively works [22]. In this case, it is easy to show that the neutrally
small o results in a complete or totally disconnected net-stable fixed point of the abovementioned mapyisl+yx.
work, p(k)eck™? emerges robustly against changeséi® 1  Our model, which yieldsy=2, sets a baseline example of
and o> 0.15 unless noise is not extremely large. this class.

Y

ko/k

1000 |

IV. WHY POWER LAW WITH y=27?

By the analogy of the Pareto case, if a power law with
v# 2 is obtained,y will be transformed by the map=a
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In terms of clustering, we have observed the discrepancgcale-free regime havgclose to 2 rather than to[2]. Some
in the scaling lawC(k) « k™2 for the exponential, logistic, and networks such as the world wide web, e-mail networks, lan-
Gaussian distributions wit@(k) «k™* for the Pareto, Cauchy, guage networks, and ecological networks hayeeven
and one-sided Cauchy distributions. The Pareto distributiosmaller than Z34]. Some of these observations can be un-
with a=1 results inp(k) k™2, which coincides with the scal- derstood as small deviations from our2 law, which may
ing law for the exponential type dfiw). It means that the be explained by proper modification of the mod&8,2Q,
consistency inp(k) for different choices off(w) does not for example, by introducing stochastic threshold|2g,23,
necessarily mean the consistency in network structure. Thaonlinear relations betweenandw [22], or many-body in-
difference between the exponential tail and the power-layW€ractions.
tail of f(w) is likely to cause qualitative discrepancy@tk).
On the other hand, the degree correlation behaves similarly V. CONCLUSIONS

i i -1
in all the examined cases, namelg/k>k™. From a dy- We have shown that the thresholding model, which is in

gaplcakil_lpon;]t_ Or: \./IEW,CI.(k)' E\l/gl\ies flfﬁm a gengral forrr;]to the class of networks with intrinsic vertex weights, generates
(k)<k™, which is realistic[12,13. This scenario matches gcaje free networks wity=2, largeC, and smallL for a

the simulated dynamics shown in Figb% In this caseC(k)  proaqd choice of weight distributions. Even if we start with an
is initially just large for most vertices and converges toarbitrary weight distributionp(k) k=2 and C(k) « k™t are fi-
C(k) k", which reflects the eventual separation of the nety a1y obtained. The competitive mechanisms, such as net-
work into the core and the peripheral part. work growth with preferential attachment or hierarchical
_Boosted by the original BA models, the power lawptk)  strycture, are not mandatory for generating realistic networks
with y=3 has been pronounced in the first pl§2¢8]. More-  [18]. The cooperative thresholding mechanisms also result in
over, in percolation and contact processes on scale-free nejesired properties rather generally, and they yield somewhat
works, the critical value of the infection rate is extinguisheddifferent characteristics from those of growing types of net-
if y<3 [32]. These results suggest relevance of the powefyorks. In addition, they allow plausible physical interpreta-
law with y=3. However, real scale-free networks have moretions, have core-peripheral structure, are equipped with inho-

dispersed values of [2], and many models have been pro- mogeneity as in real networks, and facilitate analytical
posed so thaty is tunable somewhere between 2 and cgjculations[18,20.

[4,6,8-14,16,22,33 In contrast, the present model with in-

trinsic vertex weightgalso see Refs[18,2(0) and another ACKNOWLEDGMENTS

type of thresholding mode[33] broadly yield y=2. We
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