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Transmission of severe acute respiratory syndrome in dynamical small-world networks
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The outbreak of severe acute respiratory syndrd®&RS is still threatening the world because of a
possible resurgence. In the current situation that effective medical treatments such as antiviral drugs are not
discovered yet, dynamical features of the epidemics should be clarified for establishing strategies for tracing,
guarantine, isolation, and regulating social behavior of the public at appropriate costs. Here we propose a
network model for SARS epidemics and discuss why superspreaders emerged and why SARS spread espe-
cially in hospitals, which were key factors of the recent outbreak. We suggest that superspreaders are biologi-
cally contagious patients, and they may amplify the spreads by going to potentially contagious places such as
hospitals. To avoid mass transmission in hospitals, it may be a good measure to treat suspected cases without
hospitalizing them. Finally, we indicate that SARS probably propagates in small-world networks associated
with human contacts and that the biological nature of individuals and social group properties are factors more
important than the heterogeneous rates of social contacts among individuals. This is in marked contrast with
epidemics of sexually transmitted diseases or computer viruses to which scale-free network models often apply.
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I. INTRODUCTION for Disease Control and Preventiog6DC), a patient is de-
fined to be a SS if he or she has infected more than 10
people. The SARS epidemics are special in that a majority of
The first case of the recent outbreak of severe acute re§2ses originated from just a small number of SS’s. On the
piratory syndroméSARS is estimated to have started in the Other hand, nonsuperspreading patients, which by far out-
Guandong province of the People’s Republic of China innumber SS’s, explain only a small portion of the infection

i i ’ i 0
November of 2002. After that, SARS spread to many Coun_events. In Singapore, just 5 SS’s have infected 80% of about

: . ) : . 200 patients, whereas about 80% of the patients have in-
tries, causing a number of infectious cases. In spite of world

. . . . ected nobody4—6]. Also in Hong Kong, one patient caused
wide research efforts, the biological mechanism of the SAR$5re than 1())[0 su]ccessi:/e ca$%sﬁ]. gimilar pkely perscl)jns

infection is not yet fully clarified, which mars developments 4y jgentified in other parts of the world as well. Also epi-
of antiviral drugs or other means of conclusive medicationgemics of Ebola, measles, and tuberculosis often accompany
Under this condition, an effective way was to track every-ss's[4]. It is believed that SS’s are caused both by biologi-
body suspected to be involved in the spreads and quaranting| reasons such as genetic tendencies, health conditions, and
them, which is the same as a century ago. However, morstrength of the virus and by social reasons such as the man-
effective strategies in terms of safety and cost could be eser of social contacts and global structure of social interac-
tablished with the knowledge of dynamical mechanisms otion. It agrees with general understanding that epidemics de-
the outbreak including the effects of so-called superspreadepend on the personal factors and the structure of social
(SS’9 and spreads in hospitals. Along this line, epidemio-networks[7,8]. Although previous dynamical models con-
logical models that explain the actual and potential transmissider SS’s to be exception@] or do not model them explic-
sion patterns can be helpful for suppressing the spreads. Fily [1], we incorporate them as a key factor for the spread-
example, dynamical compartmental models for fully mixed!ng. _ ) o )
population[1] and for geographical subpopulations in Hong Another feature of SARS is rapid spreading in hospitals,
Kong [2] have been proposed and fitted to the real data, an@hich played a pivotal role in, at least, local outbreaks,
they are successful in explaining the real data and determirt®metimes accounting for more than half the total regional
ing the basic reproductive numbkg]. However, the models Cases. The embarrassing fact that hospitals are actually am-
contain many compartments and many parameters whodd?ying diseaseg2,4] should be provided with convincing
values are determined manually, which may obscure relativ oescpf:;rll;sr:rs] dS?eItigite V\tlr?ecgﬂbgiecdlcj)?eam?etrilgg c')lfosﬁr:iesagi dm
C‘?r.‘”'b““"f?s of the fac'gor;. Here we rather propose a Slmé\gain, we will examine the combined effects of SS’s and the
plified spatial model to indicate how interplay between net-

K struct d individual fact focts th idemi network structure.
work structure and individual factors attects the epIdemics.  pare e construct a dynamical model for SARS spreads,
A prominent feature in the SARS epidemics is the domi-

" ; , which is simpler than the previous modéls 2], but takes
nant influence of SS'1,2,4|. According to the U.S. Centers jniq account SS's and the spatial structure represented by the
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small-world propertie$9]. We then propose possible meanseach containingi,=n/g individuals. Theith individual (1
for preventing SARS spreads in the absence of vaccinatiorgign) is connected to randomly chosdq (O<k=<n,
The simulated SARS epidemics are also compared with the 1y jngividuals within the group. The rate of transmission is

ep|dem!cs of sexually transmnt.ed diseat8¥D's) and com- eproportional to the vertex degrde in the early stage of
puter viruses whose mechanism owes much to scale-free . :
roperties of the underlying networks,10—13 epidemicq 3,12]. Apart from the effects ok;, \,, and\gg,
prop ying ’ ' some social groups are more prone to transmit SARS than
others. This group dependence originates in, for example,
ventilation, sanitary levels, and the duration of grouping
[l. MODEL AND GENERAL THEORY [1,2,5]. The effect is represented by a multiplicative factor

Our model is composed aof persons located on vertices for the jth group (1=j=g). Then the effective intragroup

of a graph. A pair of individuals connected by an undirectednfection strength is calculated als;);T;, where(:--); is the

edge directly interact and possibly transmit SARS. We sim@verage over in the jth group. Presumably, social groups

ply assume three types of individuals: namely, the suscepsUch as hospitals, congested trains, airplanes, and poorly
tible, the infected but non-SS’s, and the SS’s. Here a SSyentilated residences have large);T;. For example, hos-
probably with strong and/or a large amount of viruses, has fitals may have largek;);T; because of a high population
strong tendency to infect the susceptible, even without fredensity yielding larggk;); and the fact that the susceptible
quent social contacts. The dynamics is the contact procedtospitalized for other diseases may be generally weak
with three statef12—14. A susceptible can be infected by an against infectious diseases including SARS. The influence of
adjacent patienfa SS or an infected non-$8&t certain rates. trains due to congestion and closedness of the air for long
A patient returns to the susceptible state at rate 1, mimickingime is a potential source of outbreaks in the regions where
the recovery from SARS or its death followed by the local people habitually commutate by congested public transporta-
emergence of a new healthy person. The infected non-SStons, like Japan. In contragtk;); T; may be low for groups
and SS's are modeled with different rates of infectionformed in open spaces. However, we note that SARS can
[3,8,14. An infected turns an adjacent susceptible into in-as0 break out in low-risk groups Kssis sufficiently large.
fected a non-SS or SS at ratg(1—p) or \,p, respectively,  or simplicity, we assume thaf, out of g groups haveT,

where p parametrizes the number of SS’s divided by the:-rh that is larger tharT;=T, taken by the otheg—g,
number of patients. Similarly, a SS infects an adjacent S“Sgroups. !

;:\eptlble Into t'.nfeICtii n_?ﬂ-S_SfortSdS at asrg&(la pS)S?r d Although many models ignore the spatial structure of the
né?oﬁ;e:pdefégf %ter],éxct'o?]smeecer? _fnt%r;— afear?e i toseac::rgopulation and rely on mean-field descriptidis3], spatial
Ve di ! ct ven | Y X spects should be incorporated for understanding the real dy-
other. However, they interact indirectly owing to the cross- : . . ) .
talk ratesh|p and\ g1 —p). These infection events as well namics of epidemicf2,7,8,18. Mamstream from this stand-
as death events at rate 1 happen independently for all ﬂ,%omtl arcle ”?eth"ds of percolation and t.he coptact Process on
gular latticed13,14,17. However, d-dimensional lattices

sites. The parameter values depend on the definition of a S5, - . :
the network structure, and the time scales. With the suppos[l2Ve characteristic path length—that is, the mean distance

tion of total mixing of the individuals and the definition of a Petween a pair of vertices—proportional 3. In social
SS by CDC, the data of the outbreak in Singaplefepro-  networks.L is approximately proportional to lagas in ran-
vide a rough estimate qf=0.03. As a rough estimation, we dom graphg9]. To cope with this observation, we introduce
setAss/\; =20 based on the descriptions on a small humbefandom recombination of individuals intog new groups. In
of superspreaders identified in Singappteand Hong Kong  reality, one belongs to many groups that dynamically break
[2,6]. To our knowledge, larger data about the number ofand reform more or less randomly by way of social activities
cases caused by each patient or about the detailed chains[@18]. For example, one may commute to one’s workplace
transmissions are not available in other regions. A relevanand return home everyday, possibly by changing trains,
condition that seemingly holds in the current outbreak,is which serve as temporary social groups as well. After time
<1<\gs, Where\, andA ggare multiplied by the number of to, we randomly shuffle all the vertices and reorganize them
neighbors for a moment. In this situation, the mean-fieldinto g groups and wire the vertices within each group in the
theory predicts the existence of a threshold forabove same manner as before. Then the epidemic dynamics is run
which the disease spreads wid¢l4]. The recent outbreak for anotherty before next shuffling occurs. For simplicity,
may have led to a suprathreshold regime even with small just two independent groupings are assumed to alternate, as
because\ g5 is presumably huge. The model studies usingschematically shown in Fig. 1. However, the results are eas-
real data suggest that the threshold has been crossed from tihe extended to the case of longer chains of group reforma-
above by the control effortisl,2]. tion. Owing to the shuffling, individuals initially belonging
Next, we introduce the local network structure. At a givento different groups can interact in the long run.
time, the whole population is typically divided into groups  We denotex, , andx, ssthe number of the infected non-
within which relatively frequent social contacts are expectedSS’s and that of the SS’s summed over the groups Wjth
A group represents, for example, hospital, school, family=T, (a«=h,l). In the early stages of epidemics, the dynam-
market, train, and office, and it is characterized by clusteringcs between two switching events is given by the mean-field
properties[9,15] and dense coupling. We prepagegroups, description as follows:
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Xh. 5 NsP(kipnTh—1 Ap(KidnTh 0 0 Xn.ss
d x| _ Nsd1—p)(ki)nTh N(1—p)(k)nTh—1 0 0 Xh 1 @
dt XI,SS - 0 0 )\5§)<ki>|T|_l )\|p<ki>|T| Xl,SS '

gl 0 0 Nsd1=p)k) T N(1—p)(kiy T =1/ * X

where (---), denotes averaging over the groups with  ondary infections produced by a single patient in a suscep-
=T,. The random shuffling is expressed by multiplicationtible population [1-3,7,8,19. If R, exceeds unity, the

of the following matrix from the left: disease spreads on average in mixed populations such as the
local groups in Fig. 1. SincB, equals the largest eigenvalue,
90 . 0 @Jr - 0 what matters is whether
’ ? g 9-9
0 Y. 0 Y, Eoﬂf Th(ki)n+ O_U)T|<ki>| [M(1=p)+Asp]
g g
9—do g— o ’ is greater than 1. As a result, multiple kinds of heterogene-
- 0 -0 0 ities [3l—namely, the factors associated with individual pa-
g 9 tients and those specific to the groups—interact and deter-
0 9—90_0 0 9—90_0 mine the tendency to spread. Generally speaking, a positive
g g o raisesRy. Even if both factors are subthreshold in the
(2)  absence ofr, that is,
whereo is the possible correlation factor specifying the ten- do_ {(ki)n 9—0o_ (ki)
dency for patients to join groups witkk;); Tj=(ki)nTh. ETh<k'> + g T'(k-) <1
Purely random mixing yieldgr=0. The map for the one- ' '
round dynamics comprising the contact process for tigie  and [\,(1-p)+Asgp](kj)<1, a positives can make the
followed by switching has eigenvalues 0, @,'=1—t;,  whole dynamics suprathreshold. In actual SARS spreads in
and hospitals;oc>0 seems to have held; compared with healthy
people, the SARS patients and the suspected are obviously
%JFU ef =1+ Tn(k)n[N (1-p) +AgehTHo |- 97 9% ) more likely to go to hospital wherg; and(ki>j are suppos-
g edly high. Currently, we do not have control over infection
¢ (= L+ Tk N (L) +Asg) g rates of individuals, particularlyss[2]. However, the threat

of spreads may be decreased if their behavior is altered so
that they avoid risky places. It is recommended that they be
— O')T|<ki>|} seen by doctor at home or some isolated sites. The strategies
applied in many countries such as introducing more sepa-
rated hospital rooms, making doctors and nurses work in a
XN (1= P)+?\ss‘3]_1]to single ward[20], and ordering the public to stay home also
decreasé; and o [2].

14 9—3Jo

(%—i—o
9

Tr(ki)n+

for t, small with respect to the system timéntroduced in
Eq. (1). An important indicator of outbreaks is the basic re- IIl. SIMULATION RESULTS

productive humbeR, defined as the mean number of sec- . .
We next examine effects of network structure by numeri-

random cal simulations. To focus on topological factors, we simply
shuffing setT,=T,=1 andk;j=k=ny—1 (1<i<n). The group size

N Ny, which is typically somewhat smaller than 1008], is
chosen to be 8% 92 for technical reasons, although the value
really relevant to the SARS epidemics is not kndh With
g=100, n=gny=90%, andt,=0.5, the chains of infection
after the total run time=1.0, from the viewpoint of two
different groupings as in Fig. 1, are shown in Fig&)2nd

2(b). They more or less reproduce the transmission pattern of
and g=4. The vertices initially form random graphs within each SARS in Singaporé4], mc'_Ud'ng the rapid spread_s mEd'atEd
group. After timet,, they are randomly shuffled to reform new PY SmallL and the massive influence of S$solid lines.

groups. The graph switches between the two configurations witd N€ transmission naturally spreads over time, as shown in
periodt,. Fig. 2(c) corresponding tad=2.0. By comparing Fig. @)

FIG. 1. Schematic diagram of the dynamic network fige=4
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FIG. 2. Chains of infection in the dynamical small-world netw@ak (b), (c), (d), the two-dimensional regular lattide), (f), (g), and
the scale-free networkh), (i). Transmissions from the infected non-SS’s and those from SS’s are shown by dashed and solid lines,
respectively. We set= 90, ng=281,g=100,\,=0.026,\ ss=0.52,k=80, and the time stefit=0.05. We set,=0.5 andt=1.0in(a), (b),
to=0.5andt=2.0in(c), t,=1.0 andt=2.0 in(d), t=1.0in(e), (h), t=2.0in(f), (i), andt=3.0 in(g). (a) and(b) correspond to the two
groupings shown in Fig. 1. Ife), (f), (g), a square lattice with 9090 vertices are used ard=80. In (h), (i), the scale-free network with
k=80 andn=9(? is generated by starting with a complete graph of 40 vertices and addidg vertices. Each vertex is endowed with 40
new edges whose destinations are determined according to preferential attacthent

with Fig. 2(d), which shows the results far=2.0 andt, g, andk; and the duration of the run the same as before. We
=1.0, we find that local transmission develops if the timeassume the periodic boundary conditions, &nd80 neigh-
spent with a fixed group configuration is relatively longer. bors of a vertex(x,y) (1=<x,y<90) are defined to be the
More quantitatively, Fig. @) shows, fort=2.0 andt, vertices included in the square with cenfgry) and side
=0.5, the distributions of; , which is the number of people length 9. The infection pattern appears similar to Figa)-2
to whom theith patient has directly infected. The patients 2(d) if we ignore the underlying space. However, latgeor
with largea; are mostly SS’s. Smad; is chiefly covered by the lack of global interactions, permits the disease to spread
other patients, and the distribution decays exponentialty in only linearly in time[13]. This contrasts with a small-world
within this range. The homogeneous vertex degree and thiype of networks and fully mixed networks like random
Poissm property of the processes caused the exponential taigjiraphs in which diseases spread exponentially fast in the
which is preserved in small-world-type networks like oursbeginning[3,21]. Accordingly, the transmission is by far
and random grapH®] where the vertex degrees obey narrow slower than shown in Figs(@-2(d). Although propagations
distributions. at linear rates would be good approximation before long-
range transportations had become readily available, they do
IV. DISCUSSION not match the recent spreads mediated by long-distance trav-
elers that lesseh [2,6,9,19. Taken in another way, restric-
tions on long movements can be a useful spread cofiol
Atime course of chains of infection in a two-dimensional By the same token, mathematical approaches such as perco-
square lattice are shown in FiggeR 2(f), and 2g), with n, lations and contact processes on regular lattices, which often

A. Comparison with regular lattices
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highly heterogeneous distribution kf. Compared with the
to whom a patient has directly infected—@ the dynamical small- same size of regl_JIar, small-world, or random networks
world network, (b) the scale-free network, and) Singapore[4]. whosek;’s are relzanvely homogeneous, scalejfree networks
The distributions are shown for the SSiosses and all the pa- have largeiRy>(k{)/(k;) [3,8,12,18. In percolation models,
tients (circles. We sett=2.0 in (a), (b) andt,=0.5 in (a). Ro=X{_oki(ki—1)\;, where\; denotes the rate of possible
transmission from théth individual[8]. Consequently, in the
original scale-free networks whose density functiorkpfs
proportional toki‘3, the critical value present for regular,
small-world, or random networks of the same mean edge
density is extinguishef@8]. The same is true for dynamical
models such as contact proces§gg]. Accordingly, scale-
Another candidate for the network architecture is scalefree networks spread diseases even with infinitesimally small
free networks whose distributions kf obey the power laws infection rates. Furthermore, if a positive critical value exists
[10]. Compared with the class of small-world netwofld,  with the type of scale-free networks whose distributiorkof
scale-free networks, particularly with the original construc-follows k} (y<—3), a tendency that SS’s occupy vertices
tion algorithm, lack the clustering property, whereas they rewith largek; can remove the critical values. For example, the
aliz_e the_ power law often present in na_ttﬁﬂfS]. The chains  ijical infection rate shrinks to 0 iRiockiV’ with y'>—vy
of infection in a scale-free network with the mean vertex
degree equal to the previous simulations are shown in Figs. boes this mechanism underlie the current and possible

2(h) and 2i) for t=1.0 and 2.0, respectively. Compared with gpreading of SARS? We think not, first because SS's do not
the case of our transmission modsée Figs. @)—-2(d)], the  necessarily seem to prefer to inhabit hubs of networks. Even
influence of SS’s is more magnified. FiguréR plotting the  without such correlation, heterogeneous infection strengths
distributions ofa; for t=2.0, shows that the distribution of of patients are not probably determined by the highly hetero-
a; decays with a power law rather than exponentially forgeneousk;. A major route for SARS transmission is daily
small a; . When more extensive data become available, wepersonal contacts. In this respect, distributionskobf ac-
will be able to fit Fig. 3a) or 3(b) to the real data as shown quaintance networks and friendship networks do not follow
in Fig. 3(c) and gain more insights into the real epidemics,power laws, but have exponential tails because of aging of
based on the distributions af . Figure 3 also suggests that individuals and their limited capacityl5,16. Particularly,
more patients in total result from the epidemics in scale-freehe number of contacts per day is limited by the time and
networks than in our model network, even though the meamrnergy of a person, which flattens the distributiork,gf SS’s
transmission rate and the mean vertex degree are the samef SARS seem to lead ordinary social lives. SS’s possibly
In Fig. 4, we plot k;,a;) for each subpopulation of the result from the combination of larga; and the stay in
susceptible ;=0), the infected non-SS’s, and the SS's. Forgroups with larggk;);T;, as has been discussed in this pa-
the infected non-SS’s and SS&, is roughly proportional to  per. Scale-free networks are rather relevant to spreads of
k; . This explains the power-law tail in Fig(l3 and enables computer viruses and STD'$11,12,16,19% Spreads are
the existence of extremely contagious SS’s that could benostly mediated by individuals on hubs in such epidemics,
called ultrasuperspreaders. The scale-free property impliesnd ultrasuperspreaders may result as a combination of large

FIG. 3. Distributions ofa;—namely, the number of individuals

yield valuable rigorous resul{d3,14,17, are subject to this
caveat.

B. Comparison with scale-free networks
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\;i and largek; [3,19]. Preventive efforts to target active pa- determined by other factors such)as k;, T;, ando. If the
tients with largek; are effective in these diseade. How-  jth individual that happens to be a patlent haseighboring
ever, efforts to suppress SARS should be invested in ident|patlents the effectivé; decreases té; — k. However K is
fying the patients with largex; and places with large oy vojative tok; in earIy stages even {€ is large. On the

(ki);T;, rather than in looking for socially active persons gher hang, clustering in the sense of la@éndirectly pro-
that exist only with probability exponentially small . motes the spreads by increasikgrhe arguments above on
the effects ofC are based on varyin@ with k fixed. How-
C. Effects of clustering ever, the population density of a group concurrently modu-

A bonus of using a small-world type of networks is that latesk and C [3]. In a group ofng people with spatial size
they are clustered, as measured by the cluster coeffi€lent Sy, (Ki)=(ng—1)S,/Sy, whereS, is the size of personal
[9]. In real situations, the probability that two patients di- Space within which each person randomly interacts with oth-
rectly infected by the same patient know each other is sigers. Obviously(k;) is proportional to the population density
nificantly high. Also from this viewpoint, small-world net- Ng/Sy. In addition,C=S,/Syx=(k;) even for a fully mixed
works are more relevant than networks with sn@Buch as population. Therefore, the concept of clustering related to the
scale-free networks or random graphs. We have used the n€fARS spreads is high population density. The network with
work shown in Fig. 1 instead of the model by Watts andlarge C has been applied in this paper to respect the social
Strogatz[9] to facilitate analysis and comprehensive under-reality.
standing of the dynamics. With edges appearing in different
timings superimposed;=(k;)/nyc, wherec is the number V. CONCLUSIONS
of random groupingsg=2 in our simulations whereas.
xlogn. If k; is the order ofny and c is not so large, our
network has small-world properties characterized by l&ge
and smallL.

In this paper, we have proposed a dynamic network model
for SARS epidemics and shown that combined effects of
superspreaders and their possible tendencies to haunt poten-

The notion of clustering might induce one to imagine situ- tially contagious places can amplify the spreads. In addition,

ations in which people congregate and SARS spreads. Howve have contrasted the different dynamical consequences ac-
ever, infection occurs only on the boundaries between a su§Ordlng to different types of underlying network structure.

ceptible and a patient, and propagation slows if a pair of the
infected face each other as typically happens in highly clus-
tered networks. An increase @irather elevates the epidemic
threshold in site percolation§21,22, bond percolations We thank M. Urashima for helpful discussions. This study
[8,22], and contact process§s,9,13. It also decreases the is partially supported by the Japan Society for the Promotion
final size of the infected population or spreads in late stagesf Science and also by the Advanced and Innovational Re-
[7,9]. In spite of these general effects 6f however, we search Program in Life Sciences from the Ministry of Edu-
claim thatC does not count in the outbreak of SARS. The cation, Culture, Sports, Science, and Technology, the Japa-
possibility of outbreaks and dynamics in initial stages arenese Government.
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