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Transmission of severe acute respiratory syndrome in dynamical small-world networks
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The outbreak of severe acute respiratory syndrome~SARS! is still threatening the world because of a
possible resurgence. In the current situation that effective medical treatments such as antiviral drugs are not
discovered yet, dynamical features of the epidemics should be clarified for establishing strategies for tracing,
quarantine, isolation, and regulating social behavior of the public at appropriate costs. Here we propose a
network model for SARS epidemics and discuss why superspreaders emerged and why SARS spread espe-
cially in hospitals, which were key factors of the recent outbreak. We suggest that superspreaders are biologi-
cally contagious patients, and they may amplify the spreads by going to potentially contagious places such as
hospitals. To avoid mass transmission in hospitals, it may be a good measure to treat suspected cases without
hospitalizing them. Finally, we indicate that SARS probably propagates in small-world networks associated
with human contacts and that the biological nature of individuals and social group properties are factors more
important than the heterogeneous rates of social contacts among individuals. This is in marked contrast with
epidemics of sexually transmitted diseases or computer viruses to which scale-free network models often apply.
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I. INTRODUCTION

The first case of the recent outbreak of severe acute
piratory syndrome~SARS! is estimated to have started in th
Guandong province of the People’s Republic of China
November of 2002. After that, SARS spread to many co
tries, causing a number of infectious cases. In spite of wo
wide research efforts, the biological mechanism of the SA
infection is not yet fully clarified, which mars developmen
of antiviral drugs or other means of conclusive medicati
Under this condition, an effective way was to track eve
body suspected to be involved in the spreads and quara
them, which is the same as a century ago. However, m
effective strategies in terms of safety and cost could be
tablished with the knowledge of dynamical mechanisms
the outbreak including the effects of so-called supersprea
~SS’s! and spreads in hospitals. Along this line, epidem
logical models that explain the actual and potential transm
sion patterns can be helpful for suppressing the spreads
example, dynamical compartmental models for fully mix
population@1# and for geographical subpopulations in Ho
Kong @2# have been proposed and fitted to the real data,
they are successful in explaining the real data and determ
ing the basic reproductive number@3#. However, the models
contain many compartments and many parameters wh
values are determined manually, which may obscure rela
contributions of the factors. Here we rather propose a s
plified spatial model to indicate how interplay between n
work structure and individual factors affects the epidemic

A prominent feature in the SARS epidemics is the dom
nant influence of SS’s@1,2,4#. According to the U.S. Center
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for Disease Control and Prevention~CDC!, a patient is de-
fined to be a SS if he or she has infected more than
people. The SARS epidemics are special in that a majorit
cases originated from just a small number of SS’s. On
other hand, nonsuperspreading patients, which by far
number SS’s, explain only a small portion of the infectio
events. In Singapore, just 5 SS’s have infected 80% of ab
200 patients, whereas about 80% of the patients have
fected nobody@4–6#. Also in Hong Kong, one patient cause
more than 100 successive cases@2,6#. Similar key persons
are identified in other parts of the world as well. Also ep
demics of Ebola, measles, and tuberculosis often accomp
SS’s @4#. It is believed that SS’s are caused both by biolo
cal reasons such as genetic tendencies, health conditions
strength of the virus and by social reasons such as the m
ner of social contacts and global structure of social inter
tion. It agrees with general understanding that epidemics
pend on the personal factors and the structure of so
networks @7,8#. Although previous dynamical models con
sider SS’s to be exceptional@2# or do not model them explic-
itly @1#, we incorporate them as a key factor for the spre
ing.

Another feature of SARS is rapid spreading in hospita
which played a pivotal role in, at least, local outbreak
sometimes accounting for more than half the total regio
cases. The embarrassing fact that hospitals are actually
plifying diseases@2,4# should be provided with convincing
mechanisms so that we can reduce the risk of spread
hospitals and relieve the public of anxieties. To this e
again, we will examine the combined effects of SS’s and
network structure.

Here we construct a dynamical model for SARS sprea
which is simpler than the previous models@1,2#, but takes
into account SS’s and the spatial structure represented by
©2004 The American Physical Society17-1
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small-world properties@9#. We then propose possible mea
for preventing SARS spreads in the absence of vaccinat
The simulated SARS epidemics are also compared with
epidemics of sexually transmitted diseases~STD’s! and com-
puter viruses whose mechanism owes much to scale-
properties of the underlying networks@8,10–12#.

II. MODEL AND GENERAL THEORY

Our model is composed ofn persons located on vertice
of a graph. A pair of individuals connected by an undirec
edge directly interact and possibly transmit SARS. We s
ply assume three types of individuals: namely, the susc
tible, the infected but non-SS’s, and the SS’s. Here a
probably with strong and/or a large amount of viruses, ha
strong tendency to infect the susceptible, even without
quent social contacts. The dynamics is the contact pro
with three states@12–14#. A susceptible can be infected by a
adjacent patient~a SS or an infected non-SS! at certain rates.
A patient returns to the susceptible state at rate 1, mimick
the recovery from SARS or its death followed by the loc
emergence of a new healthy person. The infected non-S
and SS’s are modeled with different rates of infecti
@3,8,14#. An infected turns an adjacent susceptible into
fected a non-SS or SS at ratel I(12p) or l I p, respectively,
where p parametrizes the number of SS’s divided by t
number of patients. Similarly, a SS infects an adjacent s
ceptible into infected non-SS or SS at a ratelSS(12p) or
lSSp, respectively@14#. The infected non-SS’s and SS’s d
not have direct interactions even if they are next to e
other. However, they interact indirectly owing to the cros
talk ratesl I p andlSS(12p). These infection events as we
as death events at rate 1 happen independently for all
sites. The parameter values depend on the definition of a
the network structure, and the time scales. With the supp
tion of total mixing of the individuals and the definition of
SS by CDC, the data of the outbreak in Singapore@4# pro-
vide a rough estimate ofp50.03. As a rough estimation, w
setlSS/l I520 based on the descriptions on a small num
of superspreaders identified in Singapore@4# and Hong Kong
@2,6#. To our knowledge, larger data about the number
cases caused by each patient or about the detailed chai
transmissions are not available in other regions. A relev
condition that seemingly holds in the current outbreak isl I
,1,lSS, wherel I andlSSare multiplied by the number o
neighbors for a moment. In this situation, the mean-fi
theory predicts the existence of a threshold forp above
which the disease spreads widely@14#. The recent outbreak
may have led to a suprathreshold regime even with smap
becauselSS is presumably huge. The model studies us
real data suggest that the threshold has been crossed fro
above by the control efforts@1,2#.

Next, we introduce the local network structure. At a giv
time, the whole population is typically divided into group
within which relatively frequent social contacts are expect
A group represents, for example, hospital, school, fam
market, train, and office, and it is characterized by cluster
properties@9,15# and dense coupling. We prepareg groups,
03191
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each containingng5n/g individuals. Thei th individual (1
< i<n) is connected to randomly chosenki (0<ki<ng

21) individuals within the group. The rate of transmission
proportional to the vertex degreeki in the early stage of
epidemics@3,12#. Apart from the effects ofki , l I , andlSS,
some social groups are more prone to transmit SARS t
others. This group dependence originates in, for exam
ventilation, sanitary levels, and the duration of groupi
@1,2,5#. The effect is represented by a multiplicative factorTj

for the j th group (1< j <g). Then the effective intragroup
infection strength is calculated as^ki& jTj , where^¯& j is the
average overi in the j th group. Presumably, social group
such as hospitals, congested trains, airplanes, and po
ventilated residences have large^ki& jTj . For example, hos-
pitals may have largêki& jTj because of a high populatio
density yielding largê ki& j and the fact that the susceptib
hospitalized for other diseases may be generally w
against infectious diseases including SARS. The influenc
trains due to congestion and closedness of the air for l
time is a potential source of outbreaks in the regions wh
people habitually commutate by congested public transpo
tions, like Japan. In contrast,^ki& jTj may be low for groups
formed in open spaces. However, we note that SARS
also break out in low-risk groups iflSS is sufficiently large.
For simplicity, we assume thatg0 out of g groups haveTj

5Th that is larger thanTj5Tl taken by the otherg2g0

groups.
Although many models ignore the spatial structure of

population and rely on mean-field descriptions@1,3#, spatial
aspects should be incorporated for understanding the rea
namics of epidemics@2,7,8,16#. Mainstream from this stand
point are methods of percolation and the contact proces
regular lattices@13,14,17#. However,d-dimensional lattices
have characteristic path lengthL—that is, the mean distanc
between a pair of vertices—proportional ton1/d. In social
networks,L is approximately proportional to logn as in ran-
dom graphs@9#. To cope with this observation, we introduc
random recombination ofn individuals intog new groups. In
reality, one belongs to many groups that dynamically bre
and reform more or less randomly by way of social activit
@7,18#. For example, one may commute to one’s workpla
and return home everyday, possibly by changing tra
which serve as temporary social groups as well. After ti
t0 , we randomly shuffle all the vertices and reorganize th
into g groups and wire the vertices within each group in t
same manner as before. Then the epidemic dynamics is
for anothert0 before next shuffling occurs. For simplicity
just two independent groupings are assumed to alternate
schematically shown in Fig. 1. However, the results are e
ily extended to the case of longer chains of group reform
tion. Owing to the shuffling, individuals initially belonging
to different groups can interact in the long run.

We denotexa,I andxa,SS the number of the infected non
SS’s and that of the SS’s summed over the groups withTj
5Ta (a5h,l ). In the early stages of epidemics, the dyna
ics between two switching events is given by the mean-fi
description as follows:
7-2
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where ^¯&a denotes averaging over the groups withTj
5Ta . The random shuffling is expressed by multiplicati
of the following matrix from the left:

S g0

g
1s 0

g0

g
1s 0

0
g0

g
1s 0

g0

g
1s

g2g0

g
2s 0

g2g0

g
2s 0

0
g2g0

g
2s 0

g2g0

g
2s

D ,

~2!

wheres is the possible correlation factor specifying the te
dency for patients to join groups witĥki& jTj5^ki&hTh .
Purely random mixing yieldss50. The map for the one
round dynamics comprising the contact process for timet0
followed by switching has eigenvalues 0, 0,e2t0>12t0 ,
and

S g0

g
1s De$211Th^ki &h@l I ~12p!1lSSp#%t01S g2g0

g
2s D

3e~211Tl ^ki & l @l I ~12p!1lSSp!#t0

.11H F S g0

g
1s DTh^ki&h1S g2g0

g
2s DTl^ki& l G

3@l I~12p!1lSSp#21J t0

for t0 small with respect to the system timet introduced in
Eq. ~1!. An important indicator of outbreaks is the basic r
productive numberR0 defined as the mean number of se

FIG. 1. Schematic diagram of the dynamic network forng54
and g54. The vertices initially form random graphs within eac
group. After time t0 , they are randomly shuffled to reform ne
groups. The graph switches between the two configurations
period t0 .
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ondary infections produced by a single patient in a susc
tible population @1–3,7,8,19#. If R0 exceeds unity, the
disease spreads on average in mixed populations such a
local groups in Fig. 1. SinceR0 equals the largest eigenvalu
what matters is whether

F S g0

g
1s DTh^ki&h1S g2g0

g
2s DTl^ki& l G@l I~12p!1lSSp#

is greater than 1. As a result, multiple kinds of heteroge
ities @3#—namely, the factors associated with individual p
tients and those specific to the groups—interact and de
mine the tendency to spread. Generally speaking, a pos
s raisesR0 . Even if both factors are subthreshold in th
absence ofs, that is,

S g0

g
Th

^ki&h

^ki&
1

g2g0

g
Tl

^ki& l

^ki&
D,1

and @l I(12p)1lSSp#^ki&,1, a positives can make the
whole dynamics suprathreshold. In actual SARS spread
hospitals;s.0 seems to have held; compared with healt
people, the SARS patients and the suspected are obvio
more likely to go to hospital whereTj and^ki& j are suppos-
edly high. Currently, we do not have control over infectio
rates of individuals, particularlylSS @2#. However, the threat
of spreads may be decreased if their behavior is altered
that they avoid risky places. It is recommended that they
seen by doctor at home or some isolated sites. The strate
applied in many countries such as introducing more se
rated hospital rooms, making doctors and nurses work i
single ward@20#, and ordering the public to stay home als
decreaseki ands @2#.

III. SIMULATION RESULTS

We next examine effects of network structure by nume
cal simulations. To focus on topological factors, we simp
setTh5Tl51 andki5k5ng21 (1< i<n). The group size
ng , which is typically somewhat smaller than 100@18#, is
chosen to be 81592 for technical reasons, although the valu
really relevant to the SARS epidemics is not known@1#. With
g5100, n5gng5902, and t050.5, the chains of infection
after the total run timet̄ 51.0, from the viewpoint of two
different groupings as in Fig. 1, are shown in Figs. 2~a! and
2~b!. They more or less reproduce the transmission patter
SARS in Singapore@4#, including the rapid spreads mediate
by small L and the massive influence of SS’s~solid lines!.
The transmission naturally spreads over time, as show
Fig. 2~c! corresponding tot̄ 52.0. By comparing Fig. 2~c!

th
7-3



d lines,

0

MASUDA, KONNO, AND AIHARA PHYSICAL REVIEW E 69, 031917 ~2004!
FIG. 2. Chains of infection in the dynamical small-world network~a!, ~b!, ~c!, ~d!, the two-dimensional regular lattice~e!, ~f!, ~g!, and
the scale-free network~h!, ~i!. Transmissions from the infected non-SS’s and those from SS’s are shown by dashed and soli

respectively. We setn5902, ng581,g5100,l I50.026,lSS50.52,k580, and the time stepDt50.05. We sett050.5 andt̄ 51.0 in ~a!, ~b!,

t050.5 andt̄ 52.0 in ~c!, t051.0 andt̄ 52.0 in ~d!, t̄ 51.0 in ~e!, ~h!, t̄ 52.0 in ~f!, ~i!, and t̄ 53.0 in ~g!. ~a! and~b! correspond to the two
groupings shown in Fig. 1. In~e!, ~f!, ~g!, a square lattice with 90390 vertices are used andk580. In ~h!, ~i!, the scale-free network with
k580 andn5902 is generated by starting with a complete graph of 40 vertices and addingn240 vertices. Each vertex is endowed with 4
new edges whose destinations are determined according to preferential attachment@10#.
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with Fig. 2~d!, which shows the results fort̄ 52.0 and t0
51.0, we find that local transmission develops if the tim
spent with a fixed group configuration is relatively longer

More quantitatively, Fig. 3~a! shows, for t̄ 52.0 and t0
50.5, the distributions ofai , which is the number of people
to whom thei th patient has directly infected. The patien
with largeai are mostly SS’s. Smallai is chiefly covered by
other patients, and the distribution decays exponentially inai
within this range. The homogeneous vertex degree and
Poisso´n property of the processes caused the exponential
which is preserved in small-world-type networks like ou
and random graphs@9# where the vertex degrees obey narro
distributions.

IV. DISCUSSION

A. Comparison with regular lattices

A time course of chains of infection in a two-dimension
square lattice are shown in Figs. 2~e!, 2~f!, and 2~g!, with n,
03191
he
il,

l

g, andki and the duration of the run the same as before.
assume the periodic boundary conditions, andki580 neigh-
bors of a vertex~x,y! (1<x,y<90) are defined to be the
vertices included in the square with center~x,y! and side
length 9. The infection pattern appears similar to Figs. 2~a!–
2~d! if we ignore the underlying space. However, largeL, or
the lack of global interactions, permits the disease to spr
only linearly in time@13#. This contrasts with a small-world
type of networks and fully mixed networks like rando
graphs in which diseases spread exponentially fast in
beginning @3,21#. Accordingly, the transmission is by fa
slower than shown in Figs. 2~a!–2~d!. Although propagations
at linear rates would be good approximation before lon
range transportations had become readily available, they
not match the recent spreads mediated by long-distance
elers that lessenL @2,6,9,19#. Taken in another way, restric
tions on long movements can be a useful spread control@2#.
By the same token, mathematical approaches such as p
lations and contact processes on regular lattices, which o
7-4
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yield valuable rigorous results@13,14,17#, are subject to this
caveat.

B. Comparison with scale-free networks

Another candidate for the network architecture is sca
free networks whose distributions ofki obey the power laws
@10#. Compared with the class of small-world networks@9#,
scale-free networks, particularly with the original constru
tion algorithm, lack the clustering property, whereas they
alize the power law often present in nature@15#. The chains
of infection in a scale-free network with the mean vert
degree equal to the previous simulations are shown in F
2~h! and 2~i! for t̄ 51.0 and 2.0, respectively. Compared wi
the case of our transmission model@see Figs. 2~a!–2~d!#, the
influence of SS’s is more magnified. Figure 3~b!, plotting the
distributions ofai for t̄ 52.0, shows that the distribution o
ai decays with a power law rather than exponentially
small ai . When more extensive data become available,
will be able to fit Fig. 3~a! or 3~b! to the real data as show
in Fig. 3~c! and gain more insights into the real epidemic
based on the distributions ofai . Figure 3 also suggests tha
more patients in total result from the epidemics in scale-f
networks than in our model network, even though the m
transmission rate and the mean vertex degree are the sa

In Fig. 4, we plot (ki ,ai) for each subpopulation of th
susceptible (ai50), the infected non-SS’s, and the SS’s. F
the infected non-SS’s and SS’s,ai is roughly proportional to
ki . This explains the power-law tail in Fig. 3~b! and enables
the existence of extremely contagious SS’s that could
called ultrasuperspreaders. The scale-free property imp

FIG. 3. Distributions ofai—namely, the number of individuals
to whom a patient has directly infected—in~a! the dynamical small-
world network,~b! the scale-free network, and~c! Singapore@4#.
The distributions are shown for the SS’s~crosses! and all the pa-

tients ~circles!. We sett̄ 52.0 in ~a!, ~b! and t050.5 in ~a!.
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highly heterogeneous distribution ofki . Compared with the
same size of regular, small-world, or random netwo
whoseki ’s are relatively homogeneous, scale-free netwo
have largerR0}^ki

2&/^ki& @3,8,12,16#. In percolation models,
R05( i 50

n ki(ki21)l i , wherel i denotes the rate of possibl
transmission from thei th individual@8#. Consequently, in the
original scale-free networks whose density function ofki is
proportional toki

23, the critical value present for regula
small-world, or random networks of the same mean ed
density is extinguished@8#. The same is true for dynamica
models such as contact processes@12#. Accordingly, scale-
free networks spread diseases even with infinitesimally sm
infection rates. Furthermore, if a positive critical value exi
with the type of scale-free networks whose distribution ofki

follows ki
g (g,23), a tendency that SS’s occupy vertic

with largeki can remove the critical values. For example, t

critical infection rate shrinks to 0 ifl i}ki
g8 with g8.2g

23.
Does this mechanism underlie the current and poss

spreading of SARS? We think not, first because SS’s do
necessarily seem to prefer to inhabit hubs of networks. E
without such correlation, heterogeneous infection streng
of patients are not probably determined by the highly hete
geneouski . A major route for SARS transmission is dail
personal contacts. In this respect, distributions ofki of ac-
quaintance networks and friendship networks do not foll
power laws, but have exponential tails because of aging
individuals and their limited capacity@15,16#. Particularly,
the number of contacts per day is limited by the time a
energy of a person, which flattens the distribution ofki ; SS’s
of SARS seem to lead ordinary social lives. SS’s possi
result from the combination of largel i and the stay in
groups with largê ki& jTj , as has been discussed in this p
per. Scale-free networks are rather relevant to spread
computer viruses and STD’s@11,12,16,19#. Spreads are
mostly mediated by individuals on hubs in such epidemi
and ultrasuperspreaders may result as a combination of l

FIG. 4. Relation between the vertex degreeki and the number of
infections, ai , in the scale-free network for the susceptib
~squares!, the infected non-SS’s~crosses!, and the SS’s~circles!,
with the numerical data used for Fig. 3~b!.
7-5
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l i and largeki @3,19#. Preventive efforts to target active pa
tients with largeki are effective in these diseases@8#. How-
ever, efforts to suppress SARS should be invested in ide
fying the patients with largel i and places with large
^ki& jTj , rather than in looking for socially active person
that exist only with probability exponentially small inki .

C. Effects of clustering

A bonus of using a small-world type of networks is th
they are clustered, as measured by the cluster coefficieC
@9#. In real situations, the probability that two patients d
rectly infected by the same patient know each other is
nificantly high. Also from this viewpoint, small-world net
works are more relevant than networks with smallC such as
scale-free networks or random graphs. We have used the
work shown in Fig. 1 instead of the model by Watts a
Strogatz@9# to facilitate analysis and comprehensive und
standing of the dynamics. With edges appearing in differ
timings superimposed,C>^ki&/ngc, wherec is the number
of random groupings (c52 in our simulations!, whereasL
} logn. If ki is the order ofng and c is not so large, our
network has small-world properties characterized by largC
and smallL.

The notion of clustering might induce one to imagine si
ations in which people congregate and SARS spreads. H
ever, infection occurs only on the boundaries between a
ceptible and a patient, and propagation slows if a pair of
infected face each other as typically happens in highly c
tered networks. An increase inC rather elevates the epidem
threshold in site percolations@21,22#, bond percolations
@8,22#, and contact processes@7,9,13#. It also decreases th
final size of the infected population or spreads in late sta
@7,9#. In spite of these general effects ofC, however, we
claim thatC does not count in the outbreak of SARS. T
possibility of outbreaks and dynamics in initial stages
.

,
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determined by other factors such asl i , ki , Tj , ands. If the
i th individual that happens to be a patient hask̄ neighboring
patients, the effectiveki decreases toki2 k̄. However,k̄ is
tiny relative toki in early stages even ifC is large. On the
other hand, clustering in the sense of largeC indirectly pro-
motes the spreads by increasingk. The arguments above o
the effects ofC are based on varyingC with k fixed. How-
ever, the population density of a group concurrently mod
latesk and C @3#. In a group ofng people with spatial size
Sg , ^ki&5(ng21)Sp /Sg , whereSp is the size of persona
space within which each person randomly interacts with o
ers. Obviously,̂ ki& is proportional to the population densit
ng /Sg . In addition,C5Sp /Sg}^ki& even for a fully mixed
population. Therefore, the concept of clustering related to
SARS spreads is high population density. The network w
large C has been applied in this paper to respect the so
reality.

V. CONCLUSIONS

In this paper, we have proposed a dynamic network mo
for SARS epidemics and shown that combined effects
superspreaders and their possible tendencies to haunt p
tially contagious places can amplify the spreads. In additi
we have contrasted the different dynamical consequence
cording to different types of underlying network structure
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