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Return times of random walk on generalized random graphs
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Random walks are used for modeling various dynamics in, for example, physical, biological, and social
contexts. Furthermore, their characteristics provide us with useful information on the phase transition and
critical phenomena of even broader classes of related stochastic models. Abundant results are obtained for
random walk on simple graphs such as the regular lattices and the Cayley trees. However, random walks and
related processes on more complex networks, which are often more relevant in the real world, are still open
issues, possibly yielding different characteristics. In this paper, we investigate the return times of random walks
on random graphs with arbitrary vertex degree distributions. We analytically derive the distributions of the
return times. The results are applied to some types of networks and compared with numerical data.
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I. INTRODUCTION ces are distributed has been numerically examined for scale-

The theory of the random walk has a long history. Ran-free and'small-world .networkSIG]. The largest eigenvalue
dom walks and their extensions have also been applied witAf an adjacency matrix measures how the number of closed
profound theoretical bases to modeling numerous types diaths increases as the path length tends to infinity. The ei-
physical, biological, sociological, and economical dynamicsdenvalues supply useful information on the return times of
[1]. For example, distributions of return times and scaled@ndom walkg1], serving to a wide range of applications as
limit distributions of the walkers’ positions are broadly mentioned above. However, the largest eigenvalubas
known for simple underlying graphs. They provide usefuleen characterized only in terms of the numenqal scaling law
information on critical values and phase transitions in regardor the scale-free networks in an unnormalized manner,
to survival of the branching random walks and the contacfi@mely,p=m“?N", whereN is the system size anch2is
processe§2—4], survival in the voter modelf2,5], and oc-  the mean vertex degrgé6].
currence of percolatiofs]. In this paper, we ana_lyze random walks on a general class

Indeed, a large body of theoretical results are available foPf random graphs that includes random scale-free networks,
random walks performed on regular lattices sucizésnd ~ the Erdés-Rényi random graph, and the Cayley trees as spe-
on the Cayley(or regulay trees, which are defined to be trees cial caseg4,6,10,11. Explicit expressions for the first return
with homogeneous vertex degree. However, it has been su§me probability and the annealed approximation forms for
gested recently that more complex networks as opposed {9€ gepgral return time probability are derived with the use
regular graphs and conventional random grajgfisare con- of partition of mtegers.lln Sec. !I, we introduce the network
cerned to real worlds. Particularly, important classes of ranmodel and the generating functions. In Sec. Ill, we calculate
dom graphs such as small-world networks and scale-free nelbe probability dlstrlb_utlon functions of t_he re_turn time of
works were proposed and have been examined in the lasgndom walk. Then, in Sec. IV, we confirm with some ex-
several years. These networks share some important propétples that our theoretical estimates match numerical re-
ties with real networks, such as the clustering property, shogults. Lastly, the concluspn follows, g'nd the difference in the
average path length, and the power-law of the vertex degre@ecay rate of the return time probability between regular and
distributions[8—11). They have been applied to the analysis'@ndom networks, which implies the difference in the possi-
of various biological, engineering, and social networks in-bility of percolation and the survival of contact processes,
cluding information flow in the Interng®-11] and epidem-  are also touched upon.
ics [11,13. _The p_roperties of spatia_l stochastic models, _both Il NETWORK MODEL AND GENERATING FUNCTIONS
static configurations and dynamical processes, typically
change as the network topology varies even when other basic We analyze a class of random graphs called generalized
guantities such as the mean vertex degree is conserved. F@ndom graphs in physical contex8-11] or Galton-Watson
example, the analysis of percolation-based models revealdtees in mathematical contexfd,6]. These random graphs
that the critical parameter values for the occurrence of globahre infinite trees without loops. The degree of each vertex, or
epidemics, or even their existence, depend on network topothe number of neighbors, is distributed according to an iden-
ogy [9-11]. tical and independent probability density function. As shown

It is highly likely that the properties of random walks in Fig. 1, each realization of the graph, which is generally
depend on network topolod,4], as numerical and approxi- inhomogeneous, is taken from the random ensemble. How-
mate results suggest for the quencli#gl and annealefil4] ever, they are regular in a statistical sense. Let us denote by
Watts-Strogatz-type small-world networks and for quencheg, the probability that a vertex has the degree equ#l Wve
random graphs with homogeneous vertex de@t&g In re-  assume thapy,=0 without losing generality. Consequently,
lation to this issue, how eigenvalues of the adjacency matriz,_,p,=1.
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FIG. 1. Schematic diagram showing random walk on a realiza-
tion of generalized random graph. Integers denote the time of ra

dom walk.
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W3=E(EQﬁwﬁ%0f:WﬁQﬁ+L )
n=0 \m=1

where 6 ;=1 for i=j and & ;=0 otherwise[1,18]. Strictly

speaking, Eq(2) is valid only for the quenched case. There-

fore, the following results foR(z) should be understood as

an approximation by annealed statistics.

lIl. DISTRIBUTIONS OF RETURN TIMES

To derive explicit expressions for the return time distribu-
tions, we provide the approximate recursion relation below.

"Let us resort to Fig. 1 for explanation. Suppose that the ran-

dom walker starting fron© returns toO after zn steps for
the first time(n=7 in Fig. 1. In the first step, the random

Let us designate an arbitrary vertéxof a realized graph  \yalker moves to a neighbor that we denote@y Because

as the root. We examine a random walk starting fr@m

of the statistical homogeneity of the generalized random

Since we exclusively deal with trees here, the random walkegraph, the vertex degree @ is distributed as specified by

can return taO only when the timene{0,1,2,..} is even.

In accordance, we denote loy the probability that the ran-

dom walker returns t® for the first time at time &, and by

{p} whichever neighbor 0O is chosen. The random walker
has to arrive aD’ at time 21—1 (=13) and move toO sub-
sequently at time 2 (=14). The last event occurs with prob-

rn the probability that it returns t@ irrespective of the ac- ability 1/k. In the meantime, the random walker travels for
cumulated number of returns. Here we consider only the an2Zn-2 steps without visitingd. The walker wanders in the
nealed random walk, confining ourselves in the analysis ofubtrees rooted @’ to complete loops, or closed paths of
return times averaged over both probability space of graphandom walk. Any such loop cannot cont&and the prob-
and that of random walk. To be contrasted with the annealedbility that a path emanating fro@’ enters a subtree ik
randomness is the quenched randomness, which is concerned)/k. Let us denote by the number of the loops originat-
to the ensemble of walkers on a fixed realization of randomng from O’. In Fig. 1, a is equal to 2. Then, the length
graph[17]. Both quenched13,15 and annealed14] ran-  2nj(l<i<a) of each loop is eveiin;=5 andn,=1 in Fig.
dom walks have been implicitly treated in the studies ofl), and 2y must sum up to 2-2. In addition, since the
random dynamics on complex networks. Though quenchedertex degree is homogeneously distributed, the probability
environments are realistic, the statistics based on annealdé@W for the length of loop is assumed to be the same as that
walks that we derive in the following can be regarded agor the original random walk starting and endingGat _
averages of the statistics of quenched walks over the en- Heére we make a crucial approximation of disregarding

semble of a random graph.

The generating functions for the distributiofs,} and
{rn}, which we respectively denote b®(z) and R(z), are
defined by

Q=209 R2=2r2" 1)
n=0 n=0

With gqy=0 andry=1, Q(2) and R(2) satisfy the following
relation:

o

w-SpS S

k=1 a=0 Eia

k-1

any memory effects. In other words, we suppose thatathe
subtrees rooted &)’ are independent of each other. In fact,
if the same neighbor dD’ is chosen for different entries into
the subtree, the subtrees reached by these different entries
coincide. As an example, the random walker shown in Fig. 1
travels fromA to the subtree rooted Bttwice, before return-
ing to O. In this occasion, it is not qualified to regard the
vertex degrees and the loop lengths to be independent for the
two neighbors ofO’. However, the approximation error is
small unless the mean vertex degree is extremely small. The
accuracy of the following analytical methods are investigated
in comparison with numerical simulations in Sec. IV.

Based on the consideration above, we have the following
recursion formula:

k-1

=lnizn—l,ni>0,1<i <a

qn1 qn2 e

k

II an,,. (3

S% n=n-1n=0,1<i<aa’'=1

which covers the singular casg=0 as well. Using Eq(3), the generating function df, is calculated as
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w=3{3Bs(EL) s T,

n=0 | k=1 ™ a=0 s2 n=n-1n=0,1<i<aa’=1

SES(S S e

=1 Ka=o n=0 El_lni:n—l n=0,1<i=aa’=1
R )t RTERES pnt @
k1 Kao ke K= (k= 1)Q(Z)
[
Although Q(1)=1 is always consistent with E¢4), we ex- M(U)" = (mgu + mou? + - ++)"
clude this case because the random walk on generalized ran- -
dom graphs including the Cayley trees is trans|éhtexcept =S D 1—[ m (10

for the Cayley tree with vertex degree 2, which is identical to
Z. Accordingly, we look for the solution satisfying(1) <1.
By expanding the right-hand side of Eg), we obtain

AFN S (D=n H, 1 x(l) =1

n’=n

where,, . indicates the summation over all the partitions
of the integern’ into integers. In general, a partition is

n . A
Q2) = ZE pkE ( Q( )) :M, (5)  represented by =(1"¥2\...) which means that 1 is in-
=1 Knco Q2 cludedi, (1) times in\, 2 is includedi,(2) times, and so on
[19]. By the definition of partition{i,(1),i\(2),...}, where
where NN, satisfies
M(z) = i 2 6 - i
@=2m, © Stih=S i, =n (11)
I=1 I=1

is the generating function of the moment function given by
For example,

“ (k- 1)n—1

m,= 2>

m (NN EB}={(19),(2%2),(1%3,),(12),(14),(23),(5)},
k=1

(12)

Px- (7

In deriving Eq.(5), the expansion is justified by the fact that
Q(2) has the radius of convergence equal to 1 and tkat

AN F7H={(17),(1%2),(1%3),(1322),(134),(1%23),(1%5),
—-1)/k<1. Then, we apply the following theorem to calcu- @ F=),(1°2),(273).( (14, ) (1'5)

late Q(z) andR(2).

Lagrange’s inversion formul@l8]. Let z=w/f(w) where
w/f(w) is an analytic function ofv nearw=0. If g is infi-
nitely differentiable, then

n-1

(8

au 1L’ (U)f(U)”]}

o T g
ow(2]=0(0) + 3 Z[

u=0

For our purpose, we set w(2=Q(2), f(w)
=M(w)/w, g(w)=w in Eq. (8). Apparently, the fact that
my, > 0 guarantees the regularity wf f(w) aroundw=0. As a
result, we have

dnl n
Q@ =gw=0 + E {am[(@”}o ©

We also note that

(12°),(124)(13),(16),(2°3),(25),(34),(7)}.
(13
In Eg. (10), only the partitions whose numbers of parts are
are concerned. Corresponding to Ed<) and(13), the par-

titions appearing in the summation of E.0) for (n,n’)
=(3,5 and(4,7) are as follows:

!

NEOANVE 4} ={(1%4),(1%23),(12%}. (15
1=1

NEPANOE 3} ={(123),(12%)}, (14)
=1

!

With Eg. (10), Eq. (9) is evaluated as follows:
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w=3Zn-u ¥ —=—TInm" w= = I (18)
n=1 M AF2n-1317 i\ (D=n H|=1 NOIE "n-13giy(h=n 11
=27z 2 IIm?, (16)
T whenn=1, andg,=0
where What is necessary for deriving(z) is just to replace
| g(w)=w with g(w)=1/(1-w) when applying Eq(8). Using
¢ = (:_—1) (17) Eg.(10), we obtain the annealed approximation fornRo#):
H|:1 I)\(I)l
Accordingly,

R(z) =

n- _ n o0 nnl n-n’" . n N
g S L[ O (M) s 2 [0t oy
Q@ . B

du?! (- U)2 u nlnn"o )nn+1 du® u

[ o

SIS Ccoemnx| S T ey 1"

n=1 " g ' =" (n -—n—n )' AFR’ E| 1ix(D=n H| (|)|I 1
u=0
n-1 o
=1+ E S Rt AR UL L D R U L (19
n= l( ) n"=0 Mn+n”,2|°°:li)\(l):n =1
which results in
1 n-1 o
r= 2 E) -y X [T, (20)
(n=Dt.5 RSN} =
=1\
[
whenn=1, andry=1. nature of the random walk on the Cayley trée$,18. Then
Eq.(21) is led to
IV. EXAMPLES
—Jd2 = ad -
The analytical methods developed in Sec. lll can be Q(z):d V™~ 4(d 1)2_ (22
broadly applied since the only assumptions that we have 2(d-1)

made on{p,} arepy,=0 and that the average vertex degree is
not so small. In this section, we apply our theoretical esti4n this caseQ(z) is related to the generating functi®w) of
mates to random walk on some classes of graphs that a®atalan number®,=,,C,/(n+1) [19] as follows:

often relevant in real-world situations and also of theoretical
interest.

-\V1-4z d-1 [ &
S, T Q(d— 1Z> 3
A. Cayley trees z z
Let us first consider the Cayley tregRJ] in which each . :
vertex has exactlyl vertices. Substitutingp,= & 4 into Eq. Accordingly, we obtain
(4) yields
_(d-pmt
0@ = 1 21) On= WDM- (24
d-(d-1)Q®@°

Although Eq.(21) has two different solutions of)(z), the ~ On the other hand, applyingy=(d—1)""*/d' to Eq.(18) re-
one satisfyingQ(1)=1 is excluded because of the transientsults in
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N a1y a)
(d _ 1)2 =10 iy (h (
o= 2 cg\”) S Lliy (1) > '
AF2n-13[L i (h=n d=i=rh 2 0
e}
(d-1m? £
=i > o (29 g 107
A2n-13 11405 (D=n EEJ 107
Combining Eqgs(24) and(25) provides a useful by-product: 2 "
10

> =Dy 4, (26)
AF2n-13 L0y (D=n

2(1-2)

which states that the sum of the coefficients in the moment (b)
expansion ofg, [see Eq(18)] is always equal t®,-; with- !
out regard to the distributiofp}. Z 107 [,
Similarly, Eq.(19) becomes 8 100
[=]
2-d+\d?-4(d-1)z S 107}
R(2) = -y @7 £ ool
[

1075 ¢

Then, it follows that

d? d?
(1 Tg- 12) R(mZ) =1-dzS2 (28)
FIG. 2. Probability distributions of the first return times of the

and random walk on the ER random graph with) A\=7 and (b) A\
1 ) =10. Numerical and theoretical results are indicated by circles and
(d=-1$)" -1 crosses, respectively. The results for the Cayley trees with the same
m=1- E (T)Dn’- (29) mean vertex degrees, namelg) d=7 and(b) d=10, are indicated
n=o\ d by solid lines.

Owing to the entire homogeneity of the Cayley trees, Egs.
(22) and(27) are exact in this case and agree with the theobearable in both cases for sufficiently smalor which the
retical results obtained by identifying random walk on thenumerical distributions are calculated based on enough
Cayley trees with unbiased random walk 6r{1,18]. sample points. In other words, the minimum positive prob-
ability obtained by the simulations is (5 10)=2x 1078,
and the numerically estimated probabilities are not reliable
B. Erdds-Reényi random graph around this value where statistical fluctuation counts. Related

The Erdés-Rény{ER) random graph is generated by in- to this remark, Fig. 2 shows that the numerical results are
dependently assigning an edge with probabifitpetween actually available just up to small values of that is,_n_
any possible pairs of vertice,10,11. If the number of =17 forA=7 andn=12 for A=10. As noted before, this is
verticesN scales so thas=Np converges in the limiN due to the exponential decay in the return time distribution.

— o, the vertex degree is distributed as specified by the Pois-urthermore, the decay is faster for a larger mean vertex
s6n distribution, namely, degree, or a largek, which more severely constrains the

practical upper limit ofn for which the distribution is ob-
RSN tained. Compared with the cumbersome brute-force method,
Pi= Ee ' (30) our method needs only calculation of partition of integers,
which are much more numerically feasible.

Numerically calculated distributions of the first return Figure 2 also shows, both for=7 and\=10, that the
time are indicated by circles in Figs(& and 2b) for \=7  gecay of the first return time probability is slower for the ER
and\ =10, respectively. The return probability decreases exrandom graphs than for the Cayley trees with the same mean
ponentially inn analogous to the case of the Cayley treesyertex degree. This is presumably because of the dispersion

indicated by solid lines in Fig. P1,3,18. Then many sample  of vertex degree in the ER random graph, as we discuss in
points are required for reliable estimation of the return timeggc. v

probability, for which reason we construct the probability
distributions based on 10’ runs. A new random graph is
created in each run.

Distributions predicted by the theory in Sec. Il are indi-  The vertex degrees of real networks often have power-law
cated by crosses in Fig. 2. The theoretical estimates agrefistributions. Barabési and co-workers presented a network
with the numerical results better whar 10. This is because growth model with preferential attachment to generate such a
our method works better for networks with a larger meangraph(8,10. In their scale-free networks, the vertex degree
vertex degree, which is equal to. However, the error is has a lower cutofim, and the degree distribution is repre-

C. Scale-free networks
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1 ; ~ rectly predict the numerical results as far as the mean vertex
N " degree is not extremely small. They are also useful in saving
£ 107 the computation time and hence obtaining return time prob-
§ 106 abilities on a much longer time scale than with straightfor-
g ward simulations. This merit stems from the fact that the
€ 10° algorithm for calculating partition of integers is easily imple-
2 mented[19], whereas brute-force methods require billions of
= 102 | runs to obtain the distributions and the asymptotics, particu-

larly in the case of exponentially decaying tails.

We have also found that heterogeneous graphs such as the
ER random graphs and the scale-free networks yield slower
decay of return time probabilities than the Cayley trees with

FIG. 3. Probability distributions of the first return times in the the corresponding vertex degrees. The decay rate is closely
case of scale-free networks with=4. Numerical and theoretical linked to critical phenomena and phase transitions of both
results are indicated by circles and crosses, respectively. The resultsatic [6] and dynamical[2-5] particle systems. In social
for the Cayley trees witll=7 (solid lineg andd=8 (dashed lines  contexts, information and diseases are actually suggested to
are also shown. propagate in a manner different from as we imagine by the

analogy of regular graphs such as the Cayley trees and regu-
sented by, =Nk 3(k=3) andp,=0 (k<m), whereN\is the lar lattices. For example, percolation is more likely to occur
normalization constant. The first return time probabilities ofin networks with heterogeneous vertex degridd$. Also for
random walk on scale-free random graphs witix4 are  dynamical processes such as contact procg@s8sl2 and
shown in Fig. 3, suggesting that the thegoyossep again  voter modelg2,5], occurrence of global orders such as epi-
predicts the numerical resulgsircles in a satisfactory man- demics or unanimity has the same tendency. Mathematically,
ner. In this case, the mean vertex degree is numerically cathe problem of the global orders emerging in these dynamics
culated to be 7.09. Accordingly, the results for the Cayleycan be associated with that of the dual or related processes.
trees withd=7 (solid lineg andd=8 (dotted line3 are also  For example, if simple and branching random wafkesp.
shown in Fig. 3 for comparison. The probability of the first coalescing random walksare more likely to return to the
return time decays slower for the scale-free networks, as hawigin, the critical value for phase transition becomes
also been the case for the ER random graphs. Moreovegmaller, and the probability of a global epidemic or unanim-
comparison of Figs. 2 and 3 reveals that the discrepancify becomes larger in contact proces§@s3] (resp. voter
from the regular case, which is probably caused by the hetnodels[2,5]). Accordingly, the asymptotic behavior of ran-
erogeneous vertex degree, is larger for the scale-free neom walk reported in Sec. IV suggests that global orders are
works. This is presumably because the vertex degree is morgore likely consequences in networks with heterogeneous
heterogeneous in the scale-free networks than in the ER raiertex degrees such as scale-free and ER random networks.
dom graphs. This evidence substrates the results for the contact processes

Random walk on other related graphs, such as ones whose epidemic context$12] and poses a dynamical version of
degree distributions have power laws without the lower cutthe exact results on percolati¢hil].
off, power laws with exponential higher cutoff, or simple As for exact asymptotic behavior, questions about the
exponential decaf9,11], can be analyzed similarly. The only Cayley trees with vertex degre is translated into ones
caveat is that the theory is likely to fail when the vertexabout the unbalanced random walk @n the analysis of
degree is fairly small on average. Let us also mention thawhich easily results im,on32(2yd—1/d)?" [3]. To illumi-
there is little hope for obtaining more tractable analyticalnate the asymptotic behavior aof, and r, in the case of
expressions forQ(z) and R(z) even in simpler scale-free generalized random walks is an important subject of future
cases, because the polylogarithm functions, which can bwork.
estimated only numericalljl1], appear in the calculation of
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