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Random walks are used for modeling various dynamics in, for example, physical, biological, and social
contexts. Furthermore, their characteristics provide us with useful information on the phase transition and
critical phenomena of even broader classes of related stochastic models. Abundant results are obtained for
random walk on simple graphs such as the regular lattices and the Cayley trees. However, random walks and
related processes on more complex networks, which are often more relevant in the real world, are still open
issues, possibly yielding different characteristics. In this paper, we investigate the return times of random walks
on random graphs with arbitrary vertex degree distributions. We analytically derive the distributions of the
return times. The results are applied to some types of networks and compared with numerical data.
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I. INTRODUCTION

The theory of the random walk has a long history. Ran-
dom walks and their extensions have also been applied with
profound theoretical bases to modeling numerous types of
physical, biological, sociological, and economical dynamics
[1]. For example, distributions of return times and scaled
limit distributions of the walkers’ positions are broadly
known for simple underlying graphs. They provide useful
information on critical values and phase transitions in regard
to survival of the branching random walks and the contact
processes[2–4], survival in the voter models[2,5], and oc-
currence of percolation[6].

Indeed, a large body of theoretical results are available for
random walks performed on regular lattices such asZd and
on the Cayley(or regular) trees, which are defined to be trees
with homogeneous vertex degree. However, it has been sug-
gested recently that more complex networks as opposed to
regular graphs and conventional random graphs[7] are con-
cerned to real worlds. Particularly, important classes of ran-
dom graphs such as small-world networks and scale-free net-
works were proposed and have been examined in the last
several years. These networks share some important proper-
ties with real networks, such as the clustering property, short
average path length, and the power-law of the vertex degree
distributions[8–11]. They have been applied to the analysis
of various biological, engineering, and social networks in-
cluding information flow in the Internet[9–11] and epidem-
ics [11,12]. The properties of spatial stochastic models, both
static configurations and dynamical processes, typically
change as the network topology varies even when other basic
quantities such as the mean vertex degree is conserved. For
example, the analysis of percolation-based models revealed
that the critical parameter values for the occurrence of global
epidemics, or even their existence, depend on network topol-
ogy [9–11].

It is highly likely that the properties of random walks
depend on network topology[3,4], as numerical and approxi-
mate results suggest for the quenched[13] and annealed[14]
Watts-Strogatz-type small-world networks and for quenched
random graphs with homogeneous vertex degree[15]. In re-
lation to this issue, how eigenvalues of the adjacency matri-

ces are distributed has been numerically examined for scale-
free and small-world networks[16]. The largest eigenvalue
of an adjacency matrix measures how the number of closed
paths increases as the path length tends to infinity. The ei-
genvalues supply useful information on the return times of
random walks[1], serving to a wide range of applications as
mentioned above. However, the largest eigenvaluer has
been characterized only in terms of the numerical scaling law
for the scale-free networks in an unnormalized manner,
namely,r~m1/2N1/4, whereN is the system size and 2m is
the mean vertex degree[16].

In this paper, we analyze random walks on a general class
of random graphs that includes random scale-free networks,
the Erdös-Rényi random graph, and the Cayley trees as spe-
cial cases[4,6,10,11]. Explicit expressions for the first return
time probability and the annealed approximation forms for
the general return time probability are derived with the use
of partition of integers. In Sec. II, we introduce the network
model and the generating functions. In Sec. III, we calculate
the probability distribution functions of the return time of
random walk. Then, in Sec. IV, we confirm with some ex-
amples that our theoretical estimates match numerical re-
sults. Lastly, the conclusion follows, and the difference in the
decay rate of the return time probability between regular and
random networks, which implies the difference in the possi-
bility of percolation and the survival of contact processes,
are also touched upon.

II. NETWORK MODEL AND GENERATING FUNCTIONS

We analyze a class of random graphs called generalized
random graphs in physical contexts[9–11] or Galton-Watson
trees in mathematical contexts[4,6]. These random graphs
are infinite trees without loops. The degree of each vertex, or
the number of neighbors, is distributed according to an iden-
tical and independent probability density function. As shown
in Fig. 1, each realization of the graph, which is generally
inhomogeneous, is taken from the random ensemble. How-
ever, they are regular in a statistical sense. Let us denote by
pk the probability that a vertex has the degree equal tok. We
assume thatp0=0 without losing generality. Consequently,
ok=1

` pk=1.
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Let us designate an arbitrary vertexO of a realized graph
as the root. We examine a random walk starting fromO.
Since we exclusively deal with trees here, the random walker
can return toO only when the timenP h0,1,2, . . .j is even.
In accordance, we denote byqn the probability that the ran-
dom walker returns toO for the first time at time 2n, and by
rn the probability that it returns toO irrespective of the ac-
cumulated number of returns. Here we consider only the an-
nealed random walk, confining ourselves in the analysis of
return times averaged over both probability space of graph
and that of random walk. To be contrasted with the annealed
randomness is the quenched randomness, which is concerned
to the ensemble of walkers on a fixed realization of random
graph [17]. Both quenched[13,15] and annealed[14] ran-
dom walks have been implicitly treated in the studies of
random dynamics on complex networks. Though quenched
environments are realistic, the statistics based on annealed
walks that we derive in the following can be regarded as
averages of the statistics of quenched walks over the en-
semble of a random graph.

The generating functions for the distributionshqnj and
hrnj, which we respectively denote byQszd and Rszd, are
defined by

Qszd ; o
n=0

`

qnz
n, Rszd ; o

n=0

`

rnz
n. s1d

With q0=0 and r0=1, Qszd and Rszd satisfy the following
relation:

Rszd = o
n=0

` So
m=1

n

qmrn−m + dn,0Dzn = RszdQszd + 1, s2d

where di,j =1 for i = j and di,j =0 otherwise[1,18]. Strictly
speaking, Eq.(2) is valid only for the quenched case. There-
fore, the following results forRszd should be understood as
an approximation by annealed statistics.

III. DISTRIBUTIONS OF RETURN TIMES

To derive explicit expressions for the return time distribu-
tions, we provide the approximate recursion relation below.
Let us resort to Fig. 1 for explanation. Suppose that the ran-
dom walker starting fromO returns toO after 2n steps for
the first time(n=7 in Fig. 1). In the first step, the random
walker moves to a neighbor that we denote byO8. Because
of the statistical homogeneity of the generalized random
graph, the vertex degree ofO8 is distributed as specified by
hpkj whichever neighbor ofO is chosen. The random walker
has to arrive atO8 at time 2n−1 s=13d and move toO sub-
sequently at time 2n s=14d. The last event occurs with prob-
ability 1/k. In the meantime, the random walker travels for
2n−2 steps without visitingO. The walker wanders in the
subtrees rooted atO8 to complete loops, or closed paths of
random walk. Any such loop cannot containO, and the prob-
ability that a path emanating fromO8 enters a subtree issk
−1d /k. Let us denote bya the number of the loops originat-
ing from O8. In Fig. 1, a is equal to 2. Then, the length
2nis1ø i øad of each loop is even(n1=5 andn2=1 in Fig.
1), and 2ni must sum up to 2n−2. In addition, since the
vertex degree is homogeneously distributed, the probability
law for the length of loop is assumed to be the same as that
for the original random walk starting and ending atO.

Here we make a crucial approximation of disregarding
any memory effects. In other words, we suppose that thea
subtrees rooted atO8 are independent of each other. In fact,
if the same neighbor ofO8 is chosen for different entries into
the subtree, the subtrees reached by these different entries
coincide. As an example, the random walker shown in Fig. 1
travels fromA to the subtree rooted atB twice, before return-
ing to O. In this occasion, it is not qualified to regard the
vertex degrees and the loop lengths to be independent for the
two neighbors ofO8. However, the approximation error is
small unless the mean vertex degree is extremely small. The
accuracy of the following analytical methods are investigated
in comparison with numerical simulations in Sec. IV.

Based on the consideration above, we have the following
recursion formula:

qn = o
k=1

`

pko
a=0

n−1

o
oi=1

a ni=n−1,niù0,1øiøa

k − 1

k
qn1

k − 1

k
qn2

¯

k − 1

k
qna

1

k

= o
k=1

`
pk

k o
a=0

` Sk − 1

k
Da

o
oi=1

a ni=n−1,niù0,1øiøa

p
a8=1

a

qna8
, s3d

which covers the singular caseq0=0 as well. Using Eq.(3), the generating function ofqn is calculated as

FIG. 1. Schematic diagram showing random walk on a realiza-
tion of generalized random graph. Integers denote the time of ran-
dom walk.
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Qszd = o
n=0

` Ho
k=1

`
pk

k o
a=0

` Sk − 1

k
Da

o
oi=1

a ni=n−1,niù0,1øiøa

p
a8=1

a

qna8Jzn

= zo
k=1

`
pk

k o
a=0

` Sk − 1

k
Da

o
n=0

`

o
oi=1

a ni=n−1,niù0,1øiøa

p
a8=1

a

qna8
zna8

=zo
k=1

`
pk

k o
a=0

` Sk − 1

k
Da

Qszda = zo
k=1

`
pk

k − sk − 1dQszd
. s4d

Although Qs1d=1 is always consistent with Eq.(4), we ex-
clude this case because the random walk on generalized ran-
dom graphs including the Cayley trees is transient[6], except
for the Cayley tree with vertex degree 2, which is identical to
Z. Accordingly, we look for the solution satisfyingQs1d,1.

By expanding the right-hand side of Eq.(4), we obtain

Qszd = zo
k=1

`
pk

k o
n=0

` Sk − 1

k
QszdDn

=
zMfQszdg

Qszd
, s5d

where

Mszd ; o
n=1

`

mnz
n s6d

is the generating function of the moment function given by

mn ; o
k=1

`
sk − 1dn−1

kn pk. s7d

In deriving Eq.(5), the expansion is justified by the fact that
Qszd has the radius of convergence equal to 1 and thatsk
−1d /k,1. Then, we apply the following theorem to calcu-
late Qszd andRszd.

Lagrange’s inversion formula[18]. Let z=w/ fswd where
w/ fswd is an analytic function ofw nearw=0. If g is infi-
nitely differentiable, then

gfwszdg = gs0d + o
n=1

`
zn

n!
F dn−1

dun−1fg8sudfsudngG
u=0

. s8d

For our purpose, we set wszd=Qszd , fswd
=Mswd /w, gswd=w in Eq. (8). Apparently, the fact that
m1.0 guarantees the regularity ofw/ fswd aroundw=0. As a
result, we have

Qszd = gswd=0 + o
n=1

`
zn

n!
H dn−1

dun−1FSMsud
u

DnGJ
u=0

. s9d

We also note that

Msudn = sm1u + m2u
2 + ¯dn

= o
n8=n

`

un8 o
l£n8,ol=1

` ilsld=n

n!

pl=1

`
ilsld!

p
l=1

`

ml
ilsld, s10d

whereol£n8 indicates the summation over all the partitions
of the integern8 into integers. In general, a partitionl is
represented byl=s1ils1d2ils2d

¯d, which means that 1 is in-
cludedils1d times inl, 2 is includedils2d times, and so on
[19]. By the definition of partition,hils1d , ils2d , . . .j, where
l£n8, satisfies

o
l=1

`

l i lsld = o
l=1

n8

l i l = n8. s11d

For example,

hlul £ 5j = hs15d,s132d,s123,d,s122d,s14d,s23d,s5dj,

s12d

hlul £ 7j = hs17d,s152d,s143d,s1322d,s134d,s1223d,s125d,

s123d,s124,ds132d,s16d,s223d,s25d,s34d,s7dj.

s13d

In Eq. (10), only the partitions whose numbers of parts aren
are concerned. Corresponding to Eqs.(12) and(13), the par-
titions appearing in the summation of Eq.(10) for sn,n8d
=s3,5d and (4,7) are as follows:

HlUl £ 5,o
l=1

`

ilsld = 3J = hs123d,s122dj, s14d

HlUl £ 7,o
l=1

`

ilsld = 4J = hs134d,s1223d,s123dj. s15d

With Eq. (10), Eq. (9) is evaluated as follows:
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Qszd = o
n=1

`
zn

n!
sn − 1d! o

l£2n−1,ol=1
` ilsld=n

n!

pl=1

`
ilsld!

p
l=1

`

ml
ilsld

=o
n=1

`

zn o
l£2n−1,ol=1

` ilsld=n

cl
sndp

l=1

`

ml
ilsld, s16d

where

cl
snd =

sn − 1d!

pl=1

`
ilsld!

. s17d

Accordingly,

qn = o
l2n−1,ol=1

` ilsld=n

cl
sndp

l=1

`

ml
ilsld s18d

whennù1, andq0=0.
What is necessary for derivingRszd is just to replace

gswd=w with gswd=1/s1−wd when applying Eq.(8). Using
Eq. (10), we obtain the annealed approximation form ofRszd:

Rszd =
1

1 − Qszd
= gswd=1 + o

n=1

`
zn

n!
F dn−1

dun−1S − 1

s1 − ud2SMsud
u

DnDG
u=0

=1 + o
n=1

`
zn

n! o
n9=0

n−1 F s− 1dn−n9sn − n9d!

s1 − udn−n9+1

dn9

dun9
SMsud

u
DnG

u=0

=1 + o
n=1

`
zn

n! o
n9=0

n−1

s− 1dn−n9sn − n9d!33 o
n8=n+n9

`
sn8 − nd!

sn8 − n − n9d!
un8−n−n9 o

l£n8,ol=1
` ilsld=n

n!

p
l=1

`

ilsld!
p
l=1

`

ml
ilsld4

u=0

=1 + o
n=1

`
zn

sn − 1d! o
n9=0

n−1

s− 1dn−n9sn − n9d ! n9 ! o
l£n+n9,ol=1

` ilsld=n

cl
sndp

l=1

`

ml
ilsld, s19d

which results in

rn =
1

sn − 1d! o
n9=0

n−1

s− 1dn−n9sn − n9d ! n9! o
l£n+n9,ol=1

` ilsld=n

cl
sndp

l=1

`

ml
ilsld, s20d

whennù1, andr0=1.

IV. EXAMPLES

The analytical methods developed in Sec. III can be
broadly applied since the only assumptions that we have
made onhpkj arep0=0 and that the average vertex degree is
not so small. In this section, we apply our theoretical esti-
mates to random walk on some classes of graphs that are
often relevant in real-world situations and also of theoretical
interest.

A. Cayley trees

Let us first consider the Cayley trees[10] in which each
vertex has exactlyd vertices. Substitutingpk=dk,d into Eq.
(4) yields

Qszd =
1

d − sd − 1dQszd
. s21d

Although Eq. (21) has two different solutions ofQszd, the
one satisfyingQs1d=1 is excluded because of the transient

nature of the random walk on the Cayley trees[1,6,18]. Then
Eq. (21) is led to

Qszd =
d − Îd2 − 4sd − 1dz

2sd − 1d
. s22d

In this case,Qszd is related to the generating functionSszd of
Catalan numbersDn; 2nCn/ sn+1d [19] as follows:

Sszd =
1 −Î1 − 4z

2z
=

d − 1

dz
QS d2

d − 1
zD . s23d

Accordingly, we obtain

qn =
sd − 1dn−1

d2n−1 Dn−1. s24d

On the other hand, applyingml =sd−1dl−1/dl to Eq. (18) re-
sults in
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qn = o
l£2n−1,ol=1

n ilsld=n

cl
snd sd − 1do l=1

n sl−1dilsld

do l=1
n li lsld

=
sd − 1dn−1

d2n−1 o
l£2n−1,ol=1

n ilsld=n

cl
snd. s25d

Combining Eqs.(24) and(25) provides a useful by-product:

o
l£2n−1,ol=1

n ilsld=n

cl
snd = Dn−1, s26d

which states that the sum of the coefficients in the moment
expansion ofqn [see Eq.(18)] is always equal toDn−1 with-
out regard to the distributionhpkj.

Similarly, Eq. (19) becomes

Rszd =
2 − d + Îd2 − 4sd − 1dz

2s1 − zd
. s27d

Then, it follows that

S1 −
d2

d − 1
zDRS d2

d − 1
zD = 1 −dzSszd s28d

and

rn = 1 − o
n8=0

n−1 S sd − 1dn8−1

d2n8−1 DDn8. s29d

Owing to the entire homogeneity of the Cayley trees, Eqs.
(22) and(27) are exact in this case and agree with the theo-
retical results obtained by identifying random walk on the
Cayley trees with unbiased random walk onZ [1,18].

B. Erdös-Rényi random graph

The Erdös-Rényi(ER) random graph is generated by in-
dependently assigning an edge with probabilityp between
any possible pairs of vertices[7,10,11]. If the number of
verticesN scales so thatl;Np converges in the limitN
→`, the vertex degree is distributed as specified by the Pois-
són distribution, namely,

pk =
lk

k!
e−l. s30d

Numerically calculated distributions of the first return
time are indicated by circles in Figs. 2(a) and 2(b) for l=7
andl=10, respectively. The return probability decreases ex-
ponentially in n analogous to the case of the Cayley trees
indicated by solid lines in Fig. 2[1,3,18]. Then many sample
points are required for reliable estimation of the return time
probability, for which reason we construct the probability
distributions based on 53107 runs. A new random graph is
created in each run.

Distributions predicted by the theory in Sec. III are indi-
cated by crosses in Fig. 2. The theoretical estimates agree
with the numerical results better whenl=10. This is because
our method works better for networks with a larger mean
vertex degree, which is equal tol. However, the error is

bearable in both cases for sufficiently smalln for which the
numerical distributions are calculated based on enough
sample points. In other words, the minimum positive prob-
ability obtained by the simulations is 1/s53107d=2310−8,
and the numerically estimated probabilities are not reliable
around this value where statistical fluctuation counts. Related
to this remark, Fig. 2 shows that the numerical results are
actually available just up to small values ofn, that is, n
ø17 for l=7 andnø12 for l=10. As noted before, this is
due to the exponential decay in the return time distribution.
Furthermore, the decay is faster for a larger mean vertex
degree, or a largerl, which more severely constrains the
practical upper limit ofn for which the distribution is ob-
tained. Compared with the cumbersome brute-force method,
our method needs only calculation of partition of integers,
which are much more numerically feasible.

Figure 2 also shows, both forl=7 and l=10, that the
decay of the first return time probability is slower for the ER
random graphs than for the Cayley trees with the same mean
vertex degree. This is presumably because of the dispersion
of vertex degree in the ER random graph, as we discuss in
Sec. V.

C. Scale-free networks

The vertex degrees of real networks often have power-law
distributions. Barabási and co-workers presented a network
growth model with preferential attachment to generate such a
graph[8,10]. In their scale-free networks, the vertex degree
has a lower cutoffm, and the degree distribution is repre-

FIG. 2. Probability distributions of the first return times of the
random walk on the ER random graph with(a) l=7 and (b) l
=10. Numerical and theoretical results are indicated by circles and
crosses, respectively. The results for the Cayley trees with the same
mean vertex degrees, namely,(a) d=7 and(b) d=10, are indicated
by solid lines.
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sented bypk=Nk−3skù3d andpk=0 sk,md, whereN is the
normalization constant. The first return time probabilities of
random walk on scale-free random graphs withm=4 are
shown in Fig. 3, suggesting that the theory(crosses) again
predicts the numerical results(circles) in a satisfactory man-
ner. In this case, the mean vertex degree is numerically cal-
culated to be 7.09. Accordingly, the results for the Cayley
trees withd=7 (solid lines) andd=8 (dotted lines) are also
shown in Fig. 3 for comparison. The probability of the first
return time decays slower for the scale-free networks, as has
also been the case for the ER random graphs. Moreover,
comparison of Figs. 2 and 3 reveals that the discrepancy
from the regular case, which is probably caused by the het-
erogeneous vertex degree, is larger for the scale-free net-
works. This is presumably because the vertex degree is more
heterogeneous in the scale-free networks than in the ER ran-
dom graphs.

Random walk on other related graphs, such as ones whose
degree distributions have power laws without the lower cut-
off, power laws with exponential higher cutoff, or simple
exponential decay[9,11], can be analyzed similarly. The only
caveat is that the theory is likely to fail when the vertex
degree is fairly small on average. Let us also mention that
there is little hope for obtaining more tractable analytical
expressions forQszd and Rszd even in simpler scale-free
cases, because the polylogarithm functions, which can be
estimated only numerically[11], appear in the calculation of
ml.

V. CONCLUSIONS

In this paper, we have derived for generalized random
networks the analytic expressions for the probability distri-
butions of first and general return times. Our methods cor-

rectly predict the numerical results as far as the mean vertex
degree is not extremely small. They are also useful in saving
the computation time and hence obtaining return time prob-
abilities on a much longer time scale than with straightfor-
ward simulations. This merit stems from the fact that the
algorithm for calculating partition of integers is easily imple-
mented[19], whereas brute-force methods require billions of
runs to obtain the distributions and the asymptotics, particu-
larly in the case of exponentially decaying tails.

We have also found that heterogeneous graphs such as the
ER random graphs and the scale-free networks yield slower
decay of return time probabilities than the Cayley trees with
the corresponding vertex degrees. The decay rate is closely
linked to critical phenomena and phase transitions of both
static [6] and dynamical[2–5] particle systems. In social
contexts, information and diseases are actually suggested to
propagate in a manner different from as we imagine by the
analogy of regular graphs such as the Cayley trees and regu-
lar lattices. For example, percolation is more likely to occur
in networks with heterogeneous vertex degrees[11]. Also for
dynamical processes such as contact processes[2,3,12] and
voter models[2,5], occurrence of global orders such as epi-
demics or unanimity has the same tendency. Mathematically,
the problem of the global orders emerging in these dynamics
can be associated with that of the dual or related processes.
For example, if simple and branching random walks(resp.
coalescing random walks) are more likely to return to the
origin, the critical value for phase transition becomes
smaller, and the probability of a global epidemic or unanim-
ity becomes larger in contact processes[2,3] (resp. voter
models[2,5]). Accordingly, the asymptotic behavior of ran-
dom walk reported in Sec. IV suggests that global orders are
more likely consequences in networks with heterogeneous
vertex degrees such as scale-free and ER random networks.
This evidence substrates the results for the contact processes
in epidemic contexts[12] and poses a dynamical version of
the exact results on percolation[11].

As for exact asymptotic behavior, questions about the
Cayley trees with vertex degreed is translated into ones
about the unbalanced random walk onZ, the analysis of
which easily results inrn~n−3/2s2Îd−1/dd2n [3]. To illumi-
nate the asymptotic behavior ofqn and rn in the case of
generalized random walks is an important subject of future
work.
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FIG. 3. Probability distributions of the first return times in the
case of scale-free networks withm=4. Numerical and theoretical
results are indicated by circles and crosses, respectively. The results
for the Cayley trees withd=7 (solid lines) andd=8 (dashed lines)
are also shown.
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