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Abstract There is a debate regarding whether motor
memory is stored in the cerebellar cortex, or the cerebellar
nuclei, or both. Memory may be acquired in the cortex and
then be transferred to the cerebellar nuclei. Based on a
dynamical system modeling with a minimal set of variables,
we theoretically investigated possible mechanisms of
memory transfer and consolidation in the context of
vestibulo-ocular reflex learning. We tested different plas-
ticity rules for synapses in the cerebellar nuclei and took
robustness of behavior against parameter variation as the
criterion of plausibility of a model variant. In the most
plausible scenarios, mossy-fiber nucleus-neuron synapses
or Purkinje-cell nucleus-neuron synapses are plastic on a
slow time scale and store permanent memory, whose
content is passed from the cerebellar cortex storing transient
memory. In these scenarios, synaptic strengths are potenti-
ated when the mossy-fiber afferents to the nuclei are active
during a pause in Purkinje-cell activities. Furthermore,
assuming that mossy fibers create a limited variety of
signals compared to parallel fibers, our model shows partial
memory transfer from the cortex to the nuclei.
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1 Introduction

The cerebellum is involved in various types of motor
learning. It is composed of the cerebellar cortex and several
cerebellar nuclei. In particular, the vestibular nucleus (VN)
provides motor commands for the vestibulo-ocular reflex
(VOR). Two main pathways link vestibular mossy fiber
(MF) signals to VN output (Fig. 1). One that directly relays
the MFs to the VN is termed the direct pathway. The
pathway via MFs, granule cells (GCs), parallel fibers (PFs),
which are axons of GCs, and Purkinje cells (PCs) in the
flocculo-nodular lobes of the cerebellar cortex, is termed
the indirect pathway. Because PCs, which are the sole
output from the cerebellar cortex, are GABAergic, firing rates
of the VN are suppressed by activating this pathway. Human
cerebellar nuclei contain 5×105 neurons and are targeted by
1.5×107 PCs. The indirect pathway contains interneurons,
such as basket, stellate, and Golgi cells, which implement
local feedforward and feedback loops. The cerebellar cortex
has 5×1010 neurons, a considerable part of which stems
from the GCs; they account for half the neurons in the
whole brain. Because of this enormous number, the indirect
pathway is endowed with a fan-out and fan-in structure.
Each PC receives synaptic contacts from 105–106 PFs. Each
GC collects signals from 4–5 MFs. Another anatomical
feature of the indirect pathway is that climbing fibers (CFs)
from the inferior olive (IO) in the medulla innervate on
PCs. Each CF contacts 1–15 PCs, and each PC receives just
a single CF input. CFs are considered to convey somato-
sensory, visual, and cerebral-cortical information.

Based on the large number of GCs, Marr first conjec-
tured that the indirect pathway operates as a perceptron
with a large storage (Marr 1969). Albus suggested long-
term depression (LTD) rather than long-term potentiation
(LTP) of PF-PC synaptic weights should occur, with the
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CFs carrying error-correcting signals (Albus 1971). Experi-
mental work confirmed existence of both forms of plasticity
at PF-PC synapses in the flocculus lobe. LTD can be
induced when afferents to the PCs from PFs and ones from
the CFs are simultaneously active (Ito et al. 1982b; Sakurai
1987; Hansel et al. 2001; Ito 2001; Boyden et al. 2004);
visual and vestibular signals meet there. The depression
lasts for at least one hour after these associative inputs are
removed. LTP occurs with PF activity not paired with CF
activities (Sakurai 1987; Hansel et al. 2001; Ito 2001;
Boyden et al. 2004). The necessity of the flocculus for
motor learning and its retention is supported by evidence
that acute flocculus shutdown impairs memory consolida-
tion in VOR (Ito et al. 1982a; Nagao and Kitazawa 2003).

However, the cerebellar cortex is not the only site where
visual and vestibular signals converge to induce synaptic
plasticity. An alternative potential memory site is the
cerebellar nuclei. Synaptic plasticity may occur exclusively
in the cerebellar nuclei, with the flocculus being just a relay
(Miles and Lisberger 1981; Lisberger 1988). Several lines
of evidence support this idea. First, flocculus shutdown
after three days of VOR learning does not impair acquired
motor memory (Luebke and Robinson 1994). Second, PC
activities are plastic in response to vestibular signals but in
the direction opposite to the direction predicted by the
motor learning scheme based on LTD of PF-PC synapses
(Miles and Lisberger 1981; Lisberger 1988; du Lac et al.
1995). Third, LTP occurs in the vestibular and interpositus
nuclei when peduncles are electrically stimulated (Racine
et al. 1986).

Relative contributions of the two mechanisms to motor
learning remain to be studied further. The two putative
memory sites may cooperate in VOR learning and also in
eyelid conditioning (Lisberger 1988; du Lac et al. 1995;
Raymond et al. 1996; Mauk 1997; Mauk and Donegan
1997; Raymond and Lisberger 1998; Ito 2001; Nagao and
Kitazawa 2003; Boyden et al. 2004). Related to this issue is

the distinction between transient (hours) and permanent
(days or longer) plasticity. Plasticity of PF-PC synapses
may operate on a short timescale, whereas synaptic
plasticity at the cerebellar nuclei may operate in the long
term. This concert implies that transient memory in the
cerebellar cortex is eventually transferred to the cerebellar
nuclei (trigger-and-storage model) (Perrett and Mauk 1995;
Raymond et al. 1996; Mauk 1997; Mauk and Donegan
1997), and that control signals embedded in the PC firing
elicit permanent plasticity in the cerebellar nuclei. The
acquired memory will not be disturbed if the cerebellar
cortex is lesioned after a sufficiently long learning period
during which memory transfer occurs. Recent VOR experi-
ments with cats (Kassardjian et al. 2005) and mice (Shutoh
et al. 2006) support this.

Numerical simulations for VOR (Peterson et al. 1991)
and eyelid conditioning (Medina and Mauk 1999; Medina
et al. 2000) suggest that LTP in the cerebellar nuclei is
induced by MF activities during a pause in PC activities.
We study linear firing rate models of the cerebellar circuitry
with a minimal set of variables to clarify the essential
mechanism of memory transfer in VOR adaptation. In this
work, robustness against parameter variation is adopted as
the principle of model selection. The theoretical tool used
for implementing this criterion is fast–slow analysis, which
benefits from dissociation between two timescales of
synaptic plasticity, one in PF–PC synapses and the other
in VN synapses. Transient firing dynamics with multiple
timescales were proposed to be a mechanism of cerebellar
learning (Lisberger and Sejnowski 1992). Here we consider
multiple timescales of synaptic plasticity, not of transient
neural dynamics with fixed synapses.

We identify which plasticity rules for VN synapses are
consistent with experimental results and efficiency of
memory transfer. Specifically, we consider five plasticity
rules listed in Table 1. We show that two plasticity rules
guided by the PC signal robustly reproduce transfer of the
acquired VOR gain from the cerebellar cortex to the VN.
Then we briefly address the issue of contrastive memory
capacity of two memory sites, which is predicted from
numerous GCs, which may endow the cerebellar cortex
with high computational capacity (Marr 1969; Albus 1971;
Yamazaki and Tanaka 2005) compared to the nuclei. We
show that the PC-driven plasticity rule is also robust in
realizing partial memory transfer.

2 Models

2.1 Linear rate model of VOR

The VOR stabilizes the retinal image using information
from vestibular organs. We developed a linear rate coding
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Fig. 1 Architecture of the VOR learning model. The variables
surrounded by squares are synaptic weights
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model of the VOR (Fig. 1). We assume that the vestibular
signal is composed of a single frequency component. The
modeled circuit receives sinusoidal vestibular signal sinωt.
Through VOR learning, the output of the circuit approaches
a desired output. Target output is assumed to have gain R
(initial gain is R0=1) and phase θ with respect to the
vestibular signal. The target phase corresponds to appro-
priate response timing acquired via phase adaptation
(Kramer et al. 1995). The desired output is R sin (ωt+θ).

Hair cells code the time derivative of the vestibular
signal, whose phase is different from that of the vestibular
signal by π/2. Hair cell signals are received by MFs. We
assume that phase elements are created by MFs with
heterogeneous delay lines. We represent m MF signals by
a time-dependent vector u=(u1, u2, …, um)

t, where t means
the transpose. Modulation of firing rates of the i-th MF in
response to sinusoidal vestibular signals is ui= f(ωt−ψi),
where the response function f has period 2π.We assume that
phase ψi with respect to the vestibular signal is uniformly
distributed on [−Δψ, Δψ]. The ability of MFs to create
delay elements is likely to be constrained compared to that
of PFs, which benefit from feedback circuitry comprising
inhibitory interneurons. We model this factor by a small
phase dispersion Δψ.

The MF signals are also propagated to GCs and then to
PFs. PFs form negative feedback circuits in combination
with Golgi cells and plastic synapses. These circuits are
assumed to enrich the variety of timing elements created by
the MFs (De Schutter and Bjaalie 2001), which is
theoretically useful in the eyelid conditioning (Perrett
et al. 1993; Medina and Mauk 1999; Medina et al. 2000;
Yamazaki and Tanaka 2005) and the VOR (Davies and
Melvill Jones 1976; Fujita 1982; Raymond and Lisberger
1998). Without modeling the mechanism of phase
broadening explicitly, we express n PF firing rates by
x=(x1, x2, …, xn)

t where xi(t)= f (ωt+φi). The phase lead φi

is uniformly distributed on [0,2π] and reflects broadening
of the response time distribution due to the feedback loop.
We have replaced the abundance of PFs (n≫m) by the
ability of the PFs to create any phase elements ([0,2π]) in
comparison to the MFs whose phase elements are confined

in [−Δψ, Δψ]. Therefore, the numbers m and n of synapses
do not matter in the following.

In this work, we consider two types of firing rate inputs
to the VN and to the PCs: (a) time and frequency
independent constant value ( f (a)=1), and (b) sinusoidal
rate ( f (a)=sin(a)). In (b), we ignore spontaneous discharges
of these signals for theoretical tractability (Goldberg and
Fernandez 1971). The simpler form (a) disregards dynamics
of firing rates and timing learning but serves to graphical
understanding of dynamics of synaptic weights and
memory transfer. The form (b) allows analytical under-
standing of simultaneous learning of gain and timing,
although firing rates are allowed to have negative values.
PCs receive PF signals x. For simplicity, we represent the
firing rate of the PC population by a single variable y. The
PF-PC synaptic weights are represented by w=(w1, w2, …,
wn)

t. The PC firing rate is given by

y ¼ wtxþ y0; ð1Þ

where y0 is the spontaneous discharges of the PC, which is
known to occur at 40–70 Hz (Thach 1968; Armstrong and
Rawson 1979; Akemann and Knöpfel 2006). With (a), we
interpret each wi to be composed of two synapses
associated to the motor output to the opposite directions.
These two synapses are assumed to counteract, and we
express wi=wiL−wiR (wiL, wiR≥0). For simplicity, we have
supposed that the reference direction is leftward, and L and
R correspond to the leftward and rightward directions,
respectively. The portion of the PC signal wixi=wiLxi−wiRxi,
is the signed summation of wiLxi≥0 corresponding to the
leftward motor output and wiRxi≥0 corresponding to the
rightward motor output. Although we work with wi rather
than with wiL and wiR, such an interpretation is necessary to
ensure that VOR learning is launched by LTD of PF-PC
synapses (see the next section).

A bundle of MF collaterals also projects onto the VN
without passing through the cerebellar cortex. MF-VN
synaptic weights are represented by v=(v1, v2, …, vm)

t. The
output of the modeled circuit is represented by a single
variable z, that is, the mean firing rate of the nuclear

Table 1 Five hypothetical plasticity rules for the VN synapses

Synapse Rule Model Results References

MF–VN CF-driven Section 2.3.1 Sections 3.1, 3.4 Racine et al. 1986; Pugh and Raman 2006;
Peterson et al. 1991; Medina and Mauk 1999;
Medina et al. 2000

Hebbian Section 2.3.2 Sections 3.2, 3.4
PC-driven Section 2.3.3 Sections 3.3, 3.4

PC–VN Hebbian Section 2.4.1 Section 3.2 Morishita and Sastry 1996; Aizenman et al. 1998;
Ouardouz and Sastry 2000

PC-driven Section 2.4.2 Section 3.3
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neurons. Because the PC population inhibits the VN, we
have

z ¼ vtu� byþ z0 ¼ vtu� bwtx� by0 þ z0; ð2Þ

where z0 is the spontaneous discharges of the nuclear
neurons, which is known to occur at 40–60 Hz (Thach
1968; LeDoux et al. 1998; Roland and Jaeger 2005), and b
is the PC-VN synaptic weight. Similar to the case of the
PF-PC synapses, we interpret each vi to be composed of viL
corresponding to movement in the reference direction and
viR corresponding to the opposite direction.

2.2 Learning rule for CF-driven PF–PC plasticity

It is assumed that CFs carry the error signal

e ¼ R sin wt þ qð Þ � z: ð3Þ

PF-PC synaptic weights are depressed when the PF and CF
afferents to the PCs are simultaneously activated (Ito et al.
1982b). A positive (negative) e implies that the circuit
output should be tilted to the left (right) to erase the error at
time t. We assume that a positive (negative) e elicits LTD of
the PF-PC synapses driving the movement to the left (right)
at time t. Consequently, the LTD term is equal to dwL/dt=
−η1 ex when e>0 and dwR/dt=−η1 (−e)x when e<0, where
η1 is the learning rate. In this way, the CF signal, which is
equal to e when e>0 and −e when e<0, is ensured to be
nonnegative. With f (a)=1 (form (a)), dwL/dt and dwR/dt
appositely become negative because the elements of x are
unity. In this case, the LTD rule for wL and wR are summed
up into one term: dw/dt=dwL/dt−dwR/dt=−η1ex. In this
way, we justify a possible negative value of e. For
parsimony, we work with w and arbitrarily signed e instead
of wL, wR, and the nonnegative CF signal. With f (a)=sin(a)
(form (b)), dwL/dt and dwR/dt may not represent LTD
because x can be negative. Form (b) is used only for a
formal but preliminary analysis of simultaneous gain and
phase learning. For both forms of f (a), the LTD effect is
represented in the Widrow–Hoff form (Dayan and Abbott
2001, p. 320): ex=(∂e2/∂w)/2, where we note that e is a
function of w based on Eqs. (2) and (3). Therefore, LTD
lessens the error e2.

In the absence of e, PC-PF synapses experience LTP
(Sakurai 1987; Coesmans et al. 2004), which is non-
associative and realizes memory decay. We implement LTP
by an additional component η2 x, which expresses
subtractive normalization counteracting the LTD term
(Dayan and Abbott 2001, p. 290). To limit the amount of
synaptic plasticity, we assume a multiplicative normaliza-
tion term η3 n w. The factor n restricts the size of each
synaptic weight to scale as 1/n so that the PC firing rate

saturates. The learning rule for the PF–PC synapses
becomes

dw
dt

¼ �h1 R sin wt þ qð Þ � vtuþ bwtxþ by0 � z0½ �x

þ h2x� h3nw: ð4Þ
The quantity inside [] is equal to the error e.

Synaptic plasticity occurs much more slowly than
vestibular signals whose timescale is ω−1. Therefore, we
take the average over a sinusoidal cycle to obtain

dw

dt
¼ �h1

�
R sin wt þ qð Þxh i � xuth ivþ xxth ibw
þ by0 � z0ð Þ xh i�þ h2 xh i � h3nw; ð5Þ

where<>indicates the time average. Note that <xut> and
<xxt> are respectively an n by m matrix and an n by n
matrix representing correlation between signals. Learning
proceeds based on signal average, signal correlation, and
signal-target correlation.

Initially, there is no specific target gain and phase to be
acquired, and the synaptic weights rest in stationary values.
Then the VOR gain is R=R0 (=1). The corresponding
synaptic weights (w, v)=(w0, v0) satisfy

e ¼ R0 sin wt þ qð Þ � vt0uþ bwt
0xþ by0 � z0 ¼ 0: ð6Þ

By setting dw/dt=0 in Eq. (5), we derive

h2 xh i ¼ h1
�
R0 sin wt þ qð Þxh i � xuth iv0 þ xxth ibw0

þ by0 � z0ð Þ xh i�þ h3nw0 ¼ h3nw0; ð7Þ
which yields

dw
dt

¼ �h1
�
R sin wt þ qð Þxh i � xuth ivþ xxth ibw
þ by0 � z0ð Þ xh i�� h3n w� w0ð Þ

¼ �h1
�
R� R0ð Þ sin wt þ qð Þxh i � xuth i v� v0ð Þ
þ xxth i bw� w0ð Þ�� h3n w� w0ð Þ: ð8Þ

In words, we have erased a learning rate η2 (>0) by using
the initial condition.

2.3 Learning rules for MF–VN plasticity

The synapses connecting the MFs and the cerebellar nuclei
can be potentiated (Racine et al. 1986; Pugh and Raman
2006). Enhanced excitability of the deep cerebellar nucleus
in response to tetanic stimulation (Aizenman and Linden
2000) and of the VN via VOR learning (Shutoh et al.
2006), and increases in the synapse number in the
interpositus nucleus after eyelid conditioning (Kleim et al.
2002) also support learning-related strengthening of this
connection. The organizing principles of nuclear plasticity

140 J Comput Neurosci (2008) 24:137–156



and nucleus specificity are only partially understood (Mauk
1997; Mauk and Donegan 1997; Medina and Mauk 1999;
Hansel et al. 2001; Ito 2001). We examine three LTP rules
for MF–VN synapses termed (1) CF-driven, (2) Hebbian,
and (3) PC-driven rules (Medina and Mauk 1999). We
assume that LTD occurs in the absence of learning (Medina
and Mauk 1999), which is modeled by −η5 u−η6 m v. The
first term is consistent with the recent evidence that burst
stimulation of MFs induce LTD of these synapses (Zhang
and Linden 2006). The second term limits the amount of
plasticity of each synapse to the order of 1/m. Then the VN
signal saturates because there are m MF–VN synapses. We
fix the PC–VN synaptic weight when considering the MF–
VN plasticity. Accordingly, we set b=1 in this subsection.

2.3.1 CF-driven MF–VN plasticity

The IO sends excitatory collaterals to the deep cerebellar
nuclei (du Lac et al. 1995; Hansel et al. 2001; Ito 2001). A
recent anatomical study is negative about the existence of
CF collaterals to the VN (Sugihara et al. 2004). However,
CF collaterals to the cerebellar nuclei in general may be
important in motor learning schemes involving memory
transfer. Let us examine consequences of such potential
collaterals. The CF-driven learning dictates that LTP
proceeds when hypothetical CF afferents to the VN, which
are assumed to carry an error signal, and MF afferents u to
the VN are simultaneously active. This MF–VN plasticity is
formalized in a manner similar to the PF–PC plasticity,
which is also CF-driven. By averaging over a sinusoidal
cycle, we obtain the learning rate:

dv
dt

¼ �
h4 R sin wt þ qð Þ � vtuþ wtxþ y0 � z0½ �u
� h5u� h6mv

�
¼ h4 R sin wt þ qð Þuh i� uuth ivþ uxth iwþ y0 � z0ð Þ uh i½ �

� h5 uh i � h6mv; ð9Þ

where we set b=1. In the initial steady state with no error
signal, Eq. (9) in combination with Eq. (6) yields

h5 uh i ¼ h4
�
R0 sin wt þ qð Þuh i � uuth iv0 þ uxth iw0

þ y0 � z0ð Þ uh i�� h6mv0 ¼ �h6mv0: ð10Þ

Substituting Eq. (10) into Eq. (9) yields the final form of
the CF-driven rule:

dv
dt

¼ h4
�
R� R0ð Þ sin wt þ qð Þuh i � uuth i v� v0ð Þ
þ uxth i w� w0ð Þ�� h6m v� v0ð Þ: ð11Þ

2.3.2 Hebbian MF–VN plasticity

The Hebbian LTP occurs when the MF firing rate u and the
VN firing rate z=vt u−wt x−y0 are simultaneously large.
Therefore, with b=1, we obtain

dv
dt

¼ h4 vtu� wtx� y0 þ z0ð Þu� h5u� h6mvh i
¼ h4 uuth iv� uxth iw� y0 � z0ð Þ uh i½ � � h5 uh i � h6mv:

ð12Þ

Because the initial steady state corresponds to (w, v)=
(w0, v0), we have

dv
dt

¼ h4 uuth i � h6m½ � v� v0ð Þ � h4 uxth i w� w0ð Þ: ð13Þ

2.3.3 PC-driven MF–VN plasticity

In the PC-driven rule, LTP of MF-VN synapses is guided
by the PC activity y. Small y accompanied by a large MF
activity should logically induce LTP, which is supported by
in vitro experiments (Pugh and Raman 2006). We let the
LTP term equal to (ymax−y)u, where ymax is the maximum
PC firing rate. Then, we obtain

dv
dt

¼ h4 ymax � wtx� y0ð Þu� h5u� h6mvh i

¼ h4 ymax � y0ð Þ uh i � uxth iw½ � � h5 uh i � h6mv; ð14Þ

which leads to

dv
dt

¼ �h4 uxth i w� w0ð Þ � h6m v� v0ð Þ: ð15Þ

2.4 Learning rules for PC–VN plasticity

The synapses connecting the PCs and the deep cerebellar
nuclei are plastic (Morishita and Sastry 1996; Aizenman et
al. 1998; Ouardouz and Sastry 2000) and might be the
locus of permanent memory, although their plasticity is
currently unknown to be input-specific (Hansel et al. 2001;
Ito 2001). Here we study the theoretical possibility of
memory transfer from PF-PC synapses to PC–VN synapses.

Now the PC-VN synapse weight by b is plastic, and the
MF-VN synapses v are kept constant. The postsynaptic
inhibitory input from the PC to the VN is equal to by, with
y given by Eq. (1). PF-PC plasticity obeys the CF-driven
rule as before:

dw
dt

¼�h1 R sin wt þ qð Þ�vt0uþ by� z0
� �

x�h3n w� w0ð Þ:
ð16Þ
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2.4.1 Hebbian PC–VN plasticity

We deal with two rules for PC-VN plasticity. The first is the
Hebbian rule. Logically speaking, LTP (LTD) of the PF-PC
synapses, which results in reduction (enhancement) of the
circuit output, is equivalent to LTP (LTD) of the PC-VN
synapses. In the deep cerebellar nucleus, LTP of the
corresponding synapses is induced when nucleus neurons
show rebound excitation, and this plasticity has a postsyn-
aptic origin (Aizenman et al. 1998; Ouardouz and Sastry
2000). However, specific plasticity rules are unknown.
Therefore we assume that the VN neurons show similar
rebound excitation, and that LTP occurs if the inhibitory PC
input to the VN is strong enough to induce large
hyperpolarization of the VN neurons and hence more
rebound excitation. If postsynaptic excitation is reduced,
the PC-VN synapse is assumed to undergo LTD, following
the evidence for the deep cerebellar nucleus (Aizenman et
al. 1998). We model the effect of rebound excitation on the
Hebbian plasticity as follows:

db

dt
¼ h4y vt0uþ byþ z0 � zref

� �� h6b: ð17Þ

The first Hebbian term in Eq. (17) consists of the
presynaptic firing rate y and the amount of postsynaptic
excitation. Because the nucleus neurons would experience
large rebound depolarization after the release of large hy-
perpolarization, PC-VN synapses are assumed to be poten-
tiated more when by is larger. The threshold zref divides
the LTP and LTD regimes. The second term implements
saturation of the synaptic weight.

2.4.2 PC-driven PC–VN plasticity

The second rule is the PC-driven rule for which the PC–VN
synapse is potentiated when the two afferents to the VN,
that is, the MF and PC signals are both strong. The
plasticity is modeled as follows:

db

dt
¼ h4v

t
0u y� yrefð Þ � h6b; ð18Þ

Because η4≫η6, LTP occurs when the PC firing rate is
larger than a reference level yref. LTD occurs otherwise.
Because we deal with form (a) in which MF signals are
constant ( f (a)=1), this LTP rule can be also regarded as an
input-driven rule (LTP when the PC signal is strong).

2.5 Fast–slow analysis of learning dynamics

We assume that the rate of LTDof the PF-PC synapses ismuch
higher than the rate of LTP: η1≫η2, η3. We also assume that
memory decay is sufficiently slow relative to associative

plasticity; otherwise VOR learning would be too leaky to
be functional. Therefore η1≫η2, η3 and η4≫η5, η6. Excit-
ability of the VN increases slowly in accordance with the
slow timescale of VOR learning (Shutoh et al. 2006).
Therefore, the plasticity of VN synapses is assumed to be
much slower (learning on a timescale of 8–12 h and
forgetting on a timescale of 10 days) than that of PF–PC
synapses (learning on 0.5 h and forgetting on 1 day): η1≫η4
and η2, η3≫η5, η6.

These relations allow us to simplify the analysis of
synaptic dynamics based on fast–slow analysis. In other
words, we decompose synaptic dynamics into the fast
dynamics of w and the slow dynamics of v or b. The PF–
PC synaptic weights w first evolve with v or b almost fixed
until they reach a quasistationary state (dw/dt≅0 in Eq. (8)).
This is the fast PF–PC synaptic plasticity. Then, keeping
dw/dt=0, slow adaptation of v or b occurs through MF–VN
(PC–VN) synaptic plasticity. These dynamics can be
graphically understood by drawing a time course of the
synaptic weights in the space spanned by w and v or b. A
trajectory of (w, v) or (w, b) initially approaches the fast
nullcline defined by dw/dt=0. Then, the slow dynamics
drives the trajectory toward the crossing of the fast nullcline
and the slow nullcline defined by dv/dt=0 or db/dt=0. The
crossing corresponds to the equilibrium synaptic weights.

2.6 Measurement of acquired memory

We assume that the acquired memory is stored in modified
synaptic weights. Synaptic plasticity does not necessarily
lead to improved performance. We have to constrain
ourselves to the synaptic modifications that are responsible
for changes in the gain and the phase. To quantify this, we
evaluate how much of the acquired response is lost if we
reset synaptic weights to the initial values. The circuit
output is linear in terms of the MF–VN and PC–VN
contributions. Therefore, in the case of the MF–VN
plasticity, we measure how much the output of each
pathway independently contributes to the acquired output
of the whole circuit. Accordingly, we set the PC–VN
synaptic weight b=1. The memory stored in the PF–PC
synapses is

vtu� wtx� y0 þ z0ð Þ � vtu� wt
0x� y0 þ z0

� �
¼ �wt þ wt

0

� �
x;

ð19Þ

and that stored in the MF–VN synapses is

vtu� wtx� y0 þ z0ð Þ � vt0u� wtx� y0 þ z0
� �

¼ vt � vt0
� �

u:

ð20Þ
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For PC–VN plasticity, the memory stored in the PF–PC
synapses is

vtu� b wtxþ y0ð Þ þ z0ð Þ � vtu� b wt
0xþ y0

� �þ z0
� �

¼ b �wt þ wt
0

� �
x; ð21Þ

and that stored in the MF–VN synapses is

vt0u� b wtxþ y0ð Þ þ z0
� �� vt0u� b0 wtxþ y0ð Þ þ z0

� �
¼ �bþ b0ð Þwtx: ð22Þ

2.7 Parameters for numerical simulations

We set the learning rates equal to η1=1, η3=0.1, η4=0.1,
and η6=0.01. Let us note that the values of η2 and η5 are
automatically determined from the initial conditions (e.g.
Eq. (7)). Initial synaptic weights are w0=1, v0=1, and b0=1.
Spontaneous firing of nucleus cells persists even if
excitatory inputs to the nuclei are blocked (Aizenman and
Linden 1999). Therefore the spontaneous firing rates of the
PC (y0) and the VN neuron (z0) should satisfy −y0+z0>0,
and we set y0=0.5 and z0=1.5. These parameter values
assure that the steady-state gain is unity (R0=1). To assure
that the same condition holds for the PC–VN plasticity
rules, we set zref=4. For the gain-only learning, we use one
PF–PC synapse (n=1) and one MF–VN synapse (m=1).

3 Results

Plasticity of the PF–PC synapses is always driven by
concurrent PF and CF firing. We analyze memory transfer
of gain learning with five learning rules in the VN
explained above, namely, the CF-driven MF–VN synaptic
plasticity, the Hebbian MF–VN plasticity, the Hebbian PC–
VN plasticity, the PC-driven MF–VN plasticity, and the
PC-driven PC–VN plasticity. Then we examine memory
transfer of simultaneous gain-phase learning for the PC-
driven MF–VN plasticity.

3.1 Transfer of gain information with CF-driven
MF–VN plasticity

We first ignore response timing and search for a robust
mechanism of memory transfer by tracking the evolution of
synaptic weights. Then, the vestibular input is constant in
time. In accordance we set ω=0 and θ=π/2 so that the
desired output is equal to R. The response profile of the
neurons is assumed to be f (a)=1, hence the firing rate of a
MF (PF) is constant and equal to ui=1 (xi=1). As a result,

all the MFs and PFs receive the identical input and have
the same responsiveness. Therefore, we ignore synaptic
specificity and look at the mean synaptic strength of the
PF–PC synapses and that of the MF–VN synapses.
Equivalently, we represent each ensemble of synapses by
single variables v and w (m=n=1). We will simulate how a
target VOR gain is learned by the PF–PC synapse w and
transferred to the MF–VN synapse v.

The time course of synaptic weights is obtained through
fast–slow analysis (see Section 2.5). The details of
calculations are shown in Appendix A. A typical time
course of synaptic weights based on Eqs. (8) and (11)
is depicted in Fig. 2(a) for the adaptation to a larger gain
R>R0 (thick solid line). The PF–PC synapse first experi-
ences LTD to decrease the error shown by the dotted line in
Fig. 2(b). Accordingly, the contribution of the PF–PC
synapse to the system output transiently increases, as
shown by the thick solid line in Fig. 2(b). The trajectory
of the synaptic weights (thick solid line in Fig. 2(a))
approaches the fast nullcline (thin solid line), which is close
to the error-free line (dotted line). This is the fast dynamics.
Then, LTP of the MF–VN synapse ensues to replace the
memory stored in the PF–PC synapse (thin solid line in
Fig. 2(b)). This process accompanies LTP of the PF–PC
synapse along the fast nullcline (the part of the thick solid
line overlapping with a thin solid line in Fig. 2(a)). The LTP
of the PF–PC synapse here is nonassociative and decreases
the amount of memory stored in the PF–PC synapse. This is
the slow dynamics. In the long run, the memory is stored
mainly in the MF–VN synapse, not in the PF–PC synapse.
The overall learning error has been small since the fast
learning was completed. This scenario also applies when
R<R0 (Fig. 2(c) and (d)). In this case, net LTP of the
PF–PC synapse (LTD of the PF–PC synapses responsible
for the motor output opposite to the reference direction; see
Sections 2.1 and 2.2 for the interpretation) first occurs.
Then LTD of the MF–VN synapse (LTP of the MF–VN
synapses contributing to the motor output in the direction
opposite to the reference direction) follows.

Perfect learning would imply a trajectory that converges
on the e=0 line, that is, R−v+w+y0−z0=0 (dotted lines in
Fig. 2(a) and (c)). The actual error after sufficient training
time is small, as shown in the Fig. 2 and assured by the
calculations in Appendix A. The circuit is capable of both
error suppression and memory transfer. However, the CF-
driven plasticity has deficiencies. First, because η1≫η3 and
η4≫η6 (memory decay is ignored during VOR learning), the
two nullclines are close (compare two thin solid lines in
Fig. 2(a), similar for Fig. 2(c)). Mathematical details are
included in Appendix A. This implies that the position of
the equilibrium synaptic weights obtained as a crossing of
the two nullclines is sensitive to values of the learning rates,
whose choice is rather arbitrary in the absence of data.
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Indeed, if we set η3=0.05 instead of η3=0.1, which was
used in Fig. 2(a–d), the degree of memory transfer
considerably changes (compare Fig. 2(e) and (f ) with (a)

and (b)). Memory transfer is not robust against variation of
η3 (Fig. 2(g)), as well as variation of other parameters, as
mathematically shown in Appendix A (Eqs. (29) and (30)).
The equilibrium can be even organized so that PF–PC
synapses experience net LTP for gain-up learning, which is
against experimental data (Ito et al. 1982b). Second,
memory transfer takes long time (compare Fig. 2(b,d,f ) with
the results for other plasticity rules shown in Figs. 4(b,d)
and 5(b,d)). This is because proximity of the two nullclines
(thin solid lines in Fig. 2(a,c,e)) indicates that, on the fast
nullcline (dw/dt=0), evolution of the MF–VN synaptic
weight slows down to a large extent (dv/dt≅0). Third, the
flocculus is not necessary with this rule because the VN
directly receives the error signal. But at least short-time
VOR (Ito 2001) and HOKR (Shutoh et al. 2006) learning
needs the flocculus.

3.2 Transfer of gain information with Hebbian plasticity

With Hebbian MF–VN plasticity, synaptic weights evolve
according to Eqs. (8) and (13). In Appendix A, it is shown
that the amount and the direction of plasticity in the PF–PC
and MF–VN synapses sensitively depend on parameter
values. Similar to the CF-driven MF–VN plasticity,
memory transfer realized by the Hebbian MF–VN plasticity
is not robust against parameter variation.

With Hebbian PC–VN plasticity, synaptic weights
evolve according to Eqs. (16) and (17). A time course of
the synaptic weights are shown in Fig. 3(a) for R>R0. The
two nullclines (thin solid lines) do not cross each other, and
the synaptic weights diverge, which is unrealistic. When R
<R0 (Fig. 3(c)), the trajectory converges onto the fast
nullcline quickly and moves toward an equilibrium.
However, the two nullclines have similar curvatures, and
the position of the equilibrium is sensitive to parameter
values for the same reason as that for the CF-driven and
Hebbian MF–VN plasticity rules. Both for R>R0 and R<
R0, memory transfer does not occur in a robust manner
(Fig. 3(b) and (d)). An intuitive explanation is as follows.
After a sufficient learning period, the VN signal stabilizes
at a steady level with a steady strength of rebound activities
for which LTP and LTD balance. In this steady state, the
VN receives the corresponding amount of inhibition (by=b
(wtx+y0)) from the PC. The steady state is modulated by b
(wtx+y0). The PF–PC synaptic plasticity is guided by the
CF signal e=R−z=R−vtu+b(wtx+y0)−z0, in which b(wtx+
y0) is the only adjustable quantity again. Note that the MF–
VN synaptic weight v is fixed. The net inhibition b(wtx+y0)
that stabilizes the PF–PC synaptic weight does not
generally stabilize the PC–VN synaptic weight and vice
versa. Even if the equilibrium happens to exist as in
Fig. 3(d), it is not robust against parameter variation.
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Fig. 2 Memory transfer with the CF-driven MF–VN plasticity. (a, b)
Gain-up learning (R=2) and (c, d) gain-down learning (R=0.5).
(a) and (c) show time courses of synaptic weights (thick solid lines)
and the nullclines (thin solid lines). The dotted lines represent the
error-free situations. (b) and (d) show the time courses of the signed
amount of memory stored in the PF–PC (thick solid lines) and MF–
VN (thin solid lines) synapses together with the error (dotted lines).
(e, f ) Gain-up learning (R=2) when a learning rate is modified to η3=
0.05, with all the other parameters unchanged. The amount of memory
transfer (thin solid line in (f )) is much reduced compared with the case
of η3=0.1 (thin solid line in (b)). The effect of modulating η3 is
summarized in (g) for gain-up learning. Even though the learning error
(dotted line) stays small, the amount of memory in the PF–PC synapse
(thick solid line) and that in MF–VN synapse (thin solid line) are
sensitive to η3
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3.3 Transfer of gain information with PC-driven plasticity

With PC-driven MF–VN plasticity, typical synaptic time
courses are drawn in Fig. 4(a) and (c) for R>R0 and R<R0,
respectively. The corresponding time courses of the amount
of memory in each synapse are shown in Fig. 4(b) (R>R0)
and Fig. 4(d) (R<R0). This rule generates robust memory
transfer. In contrast to the CF-driven and Hebbian plasticity
rules, the slow nullcline has a large negative slope and is
separated from the fast nullcline (thin solid lines in
Fig. 4(a,c)). Consequently, when the equilibrium (crossing
of two thin solid lines) is reached after learning, R>R0 (R<
R0) duly results in LTD (LTP; see Sections 2.1 and 2.2 for
the interpretation of this LTP as LTD of another set of PF–
PC synapses) of the PF–PC synaptic weight w and LTP
(LTD) of the MF–VN synaptic weight v. At the same time,
initial LTD (LTP) of w is partially compensated by
subsequent LTP (LTD) of w. The memory transfer is robust
because the crossing of two nullclines does not move much
when the value of a learning rate is slightly changed.
Indeed, Fig. 4(e) shows that the degree of memory transfer
hardly depends on η3 in contrast to the results for the CF-
driven plasticity (Fig. 2(g)). Similar robustness with respect

to other parameters is guaranteed by mathematical results in
Appendix A (Eqs. (37) and (38)). In fact, the amount of
memory eventually stored in the PF–PC synapse is small: O
(η6/η4) (Eq. (37) in Appendix A), whereas the amount
moved to the MF–VN synapse is large: O(1) (Eq. (38)). A
byproduct of the two separate nullclines is that transfer
happens more rapidly than for the CF-driven and Hebbian
rules.

With PC-driven PC–VN plasticity, the synaptic weights
evolve as represented by thick solid lines in Fig. 5(a)
(R>R0) and Fig. 5(c) (R<R0) (see Appendix B for details).
The PF–PC synaptic weight w and the PC–VN synaptic
weight b both experience net LTD (LTP) but on different
timescales when R>R0 (R<R0). As shown in Fig. 5(b) and
(d), error is reduced (dotted lines) and the memory is
transferred from the PF–PC synapse (thick solid lines) to
the PC–VN synapse (thin solid lines). Because the fast and
slow nullclines (thin solid lines in Fig. 5(a,c)) are suf-
ficiently far from each other, memory transfer is robust
against parameter variation, as is the case with the PC-
driven MF–VN plasticity.

We conclude that the PC-driven rules, but not the CF-
driven or the Hebbian rules, provides robust mechanisms of

Fig. 3 Memory transfer with
the CF-driven PC–VN plastici-
ty. The target gain R=2 (a, b)
and R=0.5 (c, d). Time courses
of the synaptic weights (a, c)
and the memory stored in each
synapse (b, d) are shown. See
the caption of Fig. 2 for legends
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memory transfer. Our results confirm and extend the
prediction of schematic models (Lisberger 1988; Perrett
and Mauk 1995; Raymond et al. 1996; Mauk 1997) and
numerical simulations (Medina and Mauk 1999; Medina
et al. 2000, 2001; Peterson et al. 1991), which focused on
MF-nucleus plasticity.

3.4 Transfer of gain and phase information

Proper response timing as well as gain has to be learned in
VOR adaptation. Consequently, we incorporate learning of

timing, or equivalently phase, of the response. Now, the
desired output is R sin(ωt+θ) with nonzero ω. We assume
that the stimulation-induced neuronal responses are sinu-
soidal ( f (a)=sin(a)), so that the circuit output may acquire
the desired output. The firing rates of MFs and PFs are
respectively ui(t)=sin(ωt+ψi) and xi(t)=sin(ωt+φi). We
consider MF–VN plasticity because its analysis is tractable
compared to PC–VN plasticity.

A successful transfer of the gain and the phase to the VN
is schematically shown in Fig. 6 for R0=0, R=1. MFs and
PFs generate sinusoidal firing rates with dispersed phase
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Fig. 4 Memory transfer with
the PC-driven MF–VN plastici-
ty. The target gain R=2 (a, b)
and R=0.5 (c, d). Time courses
of the synaptic weights (a, c)
and the memory stored in each
synapse (b, d) are shown. (e)
The effect of modulating η3 for
gain-up learning. In contrast to
CF-driven MF–VN plasticity
(Fig. 3(g)), the amounts of
memory stored in the PF–PC
(thick solid line) and MF–VN
(thin solid line) synapses are
robust against the parameter
variation. See the caption of
Fig. 2 for legends
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elements as shown in Fig. 6(a). Each trace corresponds to
the signal of one fiber. In a very early stage of learning, the
PC signal (thick solid line in Fig. 6(b)) is adapting to the
desired output (thick dashed line) by PF–PC synaptic
plasticity. Because the PC inhibit the VN, the PC signal
has the sign opposite to the desired output. The effective
contribution of the PC to the circuit output is shown by
the thin dashed line. The MF–VN synapses are plastic on
a slower timescale. Thus the postsynaptic input to the VN
directly from the MFs, which is controlled by the MF–VN
synaptic weights, is tiny (thin solid line). The circuit
output z (thin dashed line) is approximately equal to the
sign-flipped PC signal. After some time, the PF–PC
synapses maintain most of the VOR memory, as is
represented by the enhanced PC signal (thick solid line in
Fig. 6(c)). The difference between the desired output (thick
dashed line) and z (thin dashed line) has become small. The
MF–VN contribution to z is growing but still small (thin
solid line). After sufficient time, the MF–VN synaptic
contribution (thin solid line in Fig. 6(d)) accounts for a
large portion of the circuit output, whereas the PF–PC
synaptic contribution decays (thick solid line). The error
has been small since much earlier time (Fig. 6(c) and (d)). If

Δψ<π, the variety of phase leads generated by MFs is
limited. Then the MF afferent to the VN may not be timed
to the phase of the desired output so that the phase acquired
by the MF–VN synapses may deviate from the desired
phase (imagine an arbitrary horizontal shift of the thin solid
line in Fig. 6(d)). We analyze the effect of Δψ on memory
transfer.

As shown in Appendix C (Eq. (45)), we can get away
the effect of ω by time averaging, which is justified
because synaptic plasticity occurs much more slowly than
the modulation of the vestibular signal parameterized by ω.
The amount of permanent memory stored in the MF–VN
synapses quantified by (vt−v0t)u (see Section 2.6) is
reexpressed as (vt−v0t)u≡rD (R−R0) sin(ωt+θD) by using
a suitable gain rD and phase θD. If θD is close to θ, memory
transfer is achieved properly, and rD represents the portion
of the target gain acquired by the MF–VN synapses.
Similarly, the portion of the memory remaining in the
PF–PC synapses is expressed as (−wt+w0

t) x≡rI (R−R0)
sin(ωt+θI) by suitable rI and θI.

Detailed calculations in Appendix C conclude that the
CF-driven and Hebbian MF–VN plasticity rules do not
support robust memory transfer of not only the target gain,
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Fig. 5 Memory transfer with
the PC-driven PC–VN plastici-
ty. The target gain R=2 (a, b)
and R=0.5 (c, d). Time courses
of the synaptic weights (a, c)
and the memory stored in each
synapse (b, d) when PC–VN
synapses store permanent mem-
ory. The error-free line (dotted
lines in (a) and (c)) is expressed
as b(w+y0)=v0−R=0. See the
caption of Fig. 2 for legends
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which was analyzed before, but also the target phase.
Therefore, we focus on the PC-driven MF–VN plasticity.

With the PC-driven rule, the calculations in Appendix C
show

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 q

1þ 4h1h6þ16h3h6
h1h4Ac Δyð Þ

	 
2 þ sin2 q

1þ 4h1h6þ16h3h6
h1h4As Δyð Þ

	 
2
vuuuut ; ð23Þ

qD ¼ tan�1
1þ 4h6 h1þ4h3ð Þ

h1h4Ac Δyð Þ
1þ 4h6 h1þ4h3ð Þ

h1h4As Δyð Þ
tan q

2
64

3
75; ð24Þ

rI ¼ 4h1h6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 q

h1h4Ac Δy
� �þ 4h1h6 þ 16h3h6

� �2 þ sin2 q

h1h4As Δy
� �þ 4h1h6 þ 16h3h6

� �2
vuut ; ð25Þ

qI ¼ tan�1 h1h4Ac Δy
� �þ 4h1h6 þ 16h3h6

h1h4As Δy
� �þ 4h1h6 þ 16h3h6

tan q

" #
; ð26Þ

where Ac(Δψ)=1+sin 2Δψ/2Δψ and As(Δψ)=1−sin 2Δψ/
2Δψ. As a function of Δψ, these four variables together
with the gain and the phase of the circuit output z are
plotted in Fig. 7(a) and (b). We set R0=1, R=2, and θ=π/3.
When the phase leads generated by MFs are dispersed
enough to cover the desired phase lead (Δψ≥θ=π/3), the

(a)

time

(b)

(c) (d)

Fig. 6 Schematics of simultaneous gain and phase learning. MFs and
PFs generate periodic signals with various phases as shown in (a). The
target output (thick dotted line), the circuit output (thin dashed line),
the PC signal (thick solid line), and the total postsynaptic input from
the MFs to the VN (thin solid line) are shown for (b) very early,
(c) early, and (d) late stages of learning
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Fig. 7 Simultaneous gain and phase learning with the PC-driven MF–
VN plasticity. The curves are obtained using Eqs. (23–26). The gain of
the circuit output additional to the baseline level R0 (dotted lines), rD
(thick solid lines), and rI (thin solid lines) are shown in (a). The phase
of the circuit output (dotted lines), θD (thick solid lines), and θI (thin
solid lines) are shown in (b). The target gain and the target phase are
R=2 and θ=π/3, respectively
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desired gain and phase are first acquired by the PF–PC
synapses and then transferred to the MF–VN synapses, as
depicted in Fig. 6. Eventually, the signal via the MF–VN
pathway characterized by rD (thin solid line in Fig. 7(a))
and θD (thin solid line in Fig. 7(b)) approximates the
desired output. Note that rD=1 with θD=θ implies perfect
memory transfer. Substituting Δψ=π into Eqs. (24) and
(26) leads to θD=θ and rD=η1η4/(η1η4+4η1η6+16η3η6); the
phase transfer is perfect in this case. Because we assumed
η1≫η3, η4≫η6, the gain information is also transferred
sufficiently (rD≅1, rI=O(η6/η4)≪1; see Appendix C).
Transfer is possible because transient information on R
and θ, which is stored in the PF–PC synapses and expressed
by the PC signal (rI and θI), serves as an effective teacher
for learning of MF–VN synapses.

If Δψ<θ, the target response phase θ cannot be generated
by the MF afferents to the VN. Then, transfer of the phase
information to the MF–VN synapses will be deteriorated.
Indeed, θD deviates from θ when Δψ is small (thin solid line
in Fig. 7(b)). Mathematically, if As(Δψ)=O(η3η6/η1η4),
namely, Δψ=O((η3η6/η1η4)

1/2), θD is not close to θ.
Particularly, as Δψ tends to zero, rD=cosθ and θD=0 are
approached. When Δψ is small, the PC signal, which is
plastic owing to the PF–PC synapses, rescues this mis-
match. The gain information (rI) and the phase (θI) acquired
by the PF–PC synapses are plotted by thick solid lines in
Fig. 7(a) and (b), respectively. When Δψ is not large (Δψ

<π/2), Eqs. (24) and (26) assure θI>θ>θD. In this case, the
PF–PC synapses learn to compensate the phase lag caused
by insufficient phase learning by the MF–VN synapses. As
Δψ decreases, θD decreases, and θI increases, which implies
pronounced phase compensation.

In summary, the analysis of simultaneous transfer of the
gain and phase information adds another support that the
PC-driven synaptic plasticity is more preferable to the CF-
driven and Hebbian plasticity.

4 Discussion

4.1 Summary

Our analysis illuminated how the flocculus storing transient
memory and the VN, which is a putative site of permanent
memory, can cooperate in VOR learning. For robust memory
transfer with plastic MF–VN synapses, plasticity of these
synapses must depend on negatively correlated activities of
PCs and MF input to the VN. These results are consistent
with experimental (Perrett et al. 1993) and numerical
(Medina and Mauk 1999; Medina et al. 2000) studies of
eyelid conditioning and with in vitro recording (Pugh and
Raman 2006). We also showed that PC–VN synapses
instead of MF–VN synapses may store permanent memory

if LTP occurs when PCs and MFs are simultaneously
active. The role of PC–VN synapses in VOR learning has
been neglected in previous literature (Medina and Mauk
1999; Kassardjian et al. 2005). We also briefly examined
the extended model in which the target gain is transferred to
the VN, whereas timing information may remain in the
cerebellar cortex. We showed that PC-driven MF–VN
plasticity, which turned out to be successful in gain
learning, is also consistent with this scenario. Repetitively
used information such as the response gain may be robustly
transferred to the nuclei, whereas more specific (and hence
less frequently repeated) information such as response
timing may remain in PF–PC synapses.

Strength of the current work is given by its analytical
basis. Using simple firing-rate models and qualitative
criteria, we were able to select plausible synaptic mecha-
nisms of memory consolidation. In the context of eyelid
conditioning, Medina, Mauk and coworkers presented
numerical models to explain memory transfer (Medina
and Mauk 1999; Medina et al. 2000, 2001). They
concluded that the PC-driven MF–VN plasticity is prefer-
able to the CF-driven and Hebbian rules. In their models,
the learning rates determine equilibrium synaptic weights
and seem to control the possibility of memory transfer.
Values of the learning rates are not necessarily accessible in
experiments. Our model uses the ratios of the learning rates
and the values of other model parameters just for qualitative
purposes. With robustness against parameter variation used
as the model selection criterion, fast–slow analysis led to
the conclusion that the PC-driven plasticity in the MF–VN
or PC–VN synapses is the best. Also from a memory
capacity perspective, our gain-and-phase model opts for the
PC-driven synaptic plasticity. Suppose the MF–VN plastic-
ity. With the PF–PC synaptic weights w fixed after transient
learning has completed, the input to the VN is −y=−wtx−
y0=R sin(ωt+θ)−vtu−z0. This is the error signal for the VN
because the VN output without eventual contribution of the
PC signal is equal to vtu+z0, which should be equal to R sin
(ωt+θ) after perfect memory transfer. Therefore, −y guides
error-correcting learning in the VN, as the CF signal e does
for PF–PC synapses. The same argument applies to PC–VN
plasticity as well.

We neglected noise. Actually, the PC-driven plasticity
rules are also preferred to others in terms of robustness
against dynamical noise, which is a byproduct of the fast–
slow analysis. Dynamical noise plays a role similar to
random perturbation of model parameters. As a result,
parameter-sensitive steady synaptic weights, which originate
from an undesirable plasticity rule, are also sensitive to noise.
By contrast, for the parameter-insensitive plasticity rules,
noise does not alter the steady synaptic weights very much.

In the absence of the error signal from the CF, the
memory that the model has acquired will fade away, which
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agrees with the behavioral results (Shutoh et al. 2006). This
type of forgetting occurs no matter whether noise is present
or not, and its rate is determined by the decay rate of the
VN synaptic weights.

The model is limited in several aspects. First, our model
is a linear rate code model. We discarded detailed time
courses of neural responses except that the firing rate of
each neuron can be modulated sinusoidally with phase
shifts. Actually, PCs produce simple and complex spikes.
Nuclear neurons also own intricate firing modes such as
rebound depolarization (Aizenman et al. 1998; Aizenman
and Linden 1999; Ouardouz and Sastry 2000; Pugh and
Raman 2006), which may be also true for VN neurons.
Transient firing rates may be relevant to cerebellar memory
(Lisberger and Sejnowski 1992). Learning that depends on
such spiking or transient properties is beyond the scope of
our model. Second, we assumed that the MFs create a
family of phase leads. Evidence suggests that the PFs
produce timing elements as we assumed (Perrett et al.
1993), but timing specificity of MFs projecting to the VN is
not well known. Our model is obviously an oversimplifi-
cation in this regard. Third, the vestibular input was
assumed to be a single sinusoid with a sufficiently large
frequency. Vestibular inputs composed of multiple sinus-
oids could lead to crosstalk of different frequency compo-
nents. A slow sinusoidal input would make the target gain
depending on the input frequency because of the elasticity
of the oculomotor plant. Implementing these detailed
features is warranted for future work.

4.2 Implications for savings

A part of the acquired memory may remain over time to
facilitate learning at a later time. This phenomenon is
termed savings. Let us suppose that the training period and
the resting period alternate with a total period of one day.
The amount of error decreases during training periods, but
it increases during the rest periods in which the error signal
through CFs is absent. Performance improves more rapidly
and progressively in later training sessions because the
memory partially remains even after a rest period. This
enhancement continues until the performance saturates
(Shutoh et al. 2006). The cerebellar cortex may be
responsible for transient learning and forgetting, and
construction of permanent memory in the nucleus may
underlie savings (Medina et al. 2001; Masuda and Amari
2006). Our model is capable of savings. Memory transfer
occurs in both training and resting periods, which is
different from sleep learning. In sleep learning, motor
skills improve through sleeping, and contents and stages of

sleep influence the degree of memory consolidation and
reconsolidation (Stickgold et al. 2001; Walker et al. 2003).
In our framework, memory consolidation can proceed in
the awake and sleep states alike.

4.3 Memory capacity of two pathways

The capacity of permanent versus transient memory sites in
VOR is an unresolved issue. The indirect pathway
composed of GCs, PFs, and PCs has been thought to be
computationally more powerful than the direct pathway via
MF–VN synapses because of a large number of GCs and
PFs: n≅1.5×107 (Marr 1969; Albus 1971). Such fan-out-
fan-in architecture is not found in the direct pathway. The
number of vestibular ganglion cells is 1650 in monkeys
(Nagao et al. 1997) and 190 in rats (Osanai et al. 1999).
Only 5% (monkey) to 10% (rats) among them monosyn-
aptically project to the VN (S. Nagao, private communica-
tion), which implies m=20–80.

The two pathways differ not only in the number of
neurons but also in the complexity of circuits. Local
feedforward and feedback loops involving inhibitory
interneurons are abundant in the indirect pathway (Ito
2001). To our current knowledge, the direct pathway is
devoid of such loops, which may limit its representation
ability. In experiments (Perrett et al. 1993) and simulation
studies (Peterson et al. 1991; Raymond et al. 1996; Mauk
and Donegan 1997; Medina et al. 2000) of eyelid
conditioning and VOR learning, the timing and the context
information are not transferred to the cerebellar nuclei,
whereas the gain information is. This suggests that the VN
may consolidate the information on the VOR gain, whereas
the cerebellar cortex may store timing information.

As a preliminary step to address this issue, we translated
the potentially different memory capacity of the two
pathways into the difference in the diversity of response
timing of the neurons. Specifically, the PFs were assumed
to create any phase elements, whereas MF collaterals to the
VN were assumed to create constrained phase elements.

4.4 Site of permanent memory

Earlier numerical work (Mauk 1997; Mauk and Donegan
1997; Medina and Mauk 1999; Medina et al. 2000, 2001;
Peterson et al. 1991) suggests that permanent memory
converges to the MF-nucleus synapses. These synapses
indeed show LTP (Racine et al. 1986; Pugh and Raman
2006) and LTD (Zhang and Linden 2006). Based on our
theory, the essential factor is that permanent learning is
driven by concurrent PC and MF activities. Some electro-
physiological (Aizenman and Linden 2000; Shutoh et al.
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2006) and anatomical (Kleim et al. 2002) evidence on
nucleus plasticity is not specific about which synapses
learn. The synapses connecting PC and the deep cerebellar
nucleus also undergo LTP (Aizenman et al. 1998; Ouardouz
and Sastry 2000) and LTD (Morishita and Sastry 1996;
Aizenman et al. 1998). These data suggest a postsynaptic
origin of PC–VN plasticity. Our theory predicts that memory
transfer with PC–VN plasticity is robust with the PC-
driven plasticity. However, it is not robust with the Hebbian
plasticity, which is more closely tied to the postsynaptic
plasticity mechanism observed in in vitro recordings.

The permanent memory capacity is limited by the
number of MF–VN or PC–VN synapses. The number of
MF–VN synapses was estimated to be m=20–80 in rats and
monkeys. To roughly evaluate the number of PC–VN
synapses, we disregard the animal specificity and note that
there are about 700 PCs in the flocculus of mice (S. Nagao,
private communication). The ratio of the number of PCs to
that of the VN neurons is 26:1 in cats (Palkovits et al.
1977), and simple application of this ratio provides a rough
estimate of 30 VN neurons. If a majority of the PCs is
responsible for VOR adaptation, the number of involved
synapses (from 700 PC cells to 30 VN cells) is much larger
than the number of the MF–VN synapses (from 80 MFs to
30 VNs). Then, PC–VN synapses would have a larger
storage than MF–VN synapses do. Combined with behav-
ioral experiments addressing the memory capacity, such
anatomical consideration may help understand the locus of
permanent memory.

4.5 Memory transfer beyond cerebellar motor learning

Parallelism of transient and permanent memory is a general
organizing principle throughout the brain. A human
imaging study shows that the cerebellum is involved in
early stages of motor sequence learning. Instead of the
cerebellar nuclei, the basal ganglia and the frontal lobe are
involved in permanent learning. Furthermore, delayed
recall requires activation of the primary motor cortex, the
premotor cortex, and the parietal cortex (Penhune and
Doyon 2002, 2005). By contrast, the primary motor cortex
of humans is involved in early but not late stages in skill
learning (Muellbacher et al. 2002). Then, the motor
memory has to be transferred to somewhere else for
consolidation. Another example is the basal ganglia
pathway. In motor sequence learning of monkeys, the
anterior caudate nucleus and the anterior putamen contrib-
ute to early learning, and the middle-posterior putamen to
longer memory (Miyachi et al. 1997, 2002). In the saccadic
task, memory of rewarded association tasks is first stored in
the basal ganglia, and its signal is used as an effective

teacher for slower learning sites in the frontal cortex
(Pasupathy and Miller 2005). Another famous example is
the interaction between the cerebral cortex and the
hippocampus. Hippocampus is believed to store transient
memory, and only the important information is reinstated in
the cerebral cortex (McClelland et al. 1995). Also, memory
transfer is found in fear conditioning in the amygdala (Repa
et al. 2001; Medina et al. 2002). Even though we emulated
VOR learning, our framework is general in the sense that
we adopted a linear rate coding model and fast–slow
analysis. Adequate modifications of our model may be
useful for understanding different neural systems in which
transient memory and permanent memory are intertwined.
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Appendix A: Fast–slow analysis with static MF and PF
firing and MF–VN plasticity

When the vestibular signal is static, we set ω = 0, θ = π/2,
and hence set the vestibular signal sin(ωt+θ) = 1. Given that
the MF and PF firing rates are static with f (a) = 1, we
have <sin(ωt+ θ)u>i = <sin(ωt+ θ)x>i = <u>i = <x>i =
<uxt>i, j = <xut>j, i = <xxt>i, j = 1. Here, <u>i, for example,
is time average of the i-th MF signal. Because the PC–VN
synapse is assumed to be static under MF–VN plasticity, we
set b=1. Let us assume m=n=1 (and quit bold notations)
and perform fast–slow analysis. Similar analysis works for
general m and n.

In an early stage of learning, the PF–PC synapse
w evolves much faster than the MF–VN synapse v does.
The fast nullcline defined by setting dw/dt=0 in Eq. (8) is
given by

v ¼ v0 þ R� R0 þ h1 þ h3
h1

w� w0ð Þ: ð27Þ

On a short timescale, w and v converge onto this line.

A.1 CF-driven MF–VN plasticity

For the CF-driven learning, the slow nullcline to which
w and v converge in a long run is given by setting dv/dt=0
in Eq. (11):

v ¼ v0 þ h4
h4 þ h6

R� R0ð Þ þ h4
h4 þ h6

w� w0ð Þ: ð28Þ

A trajectory of the synaptic weights in the w–v plane
approaches somewhere on the fast nullcline (Eq. (27)) and
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then slides along it toward the equilibrium obtained as the
crossing of the two nullclines. The crossing is given by

w� ¼ w0 � h1h6 R� R0ð Þ
h1h6 þ h3h4 þ h3h6

; ð29Þ

v� ¼ v0 þ h3h4 R� R0ð Þ
h1h6 þ h3h4 þ h3h6

: ð30Þ

The error at the equilibrium is

e� ¼ R� v� þ w� þ y0 � z0 ¼ h3h6 R� R0ð Þ
h1h6 þ h3h4 þ h3h6

; ð31Þ

which is small given η1≫η3.

A.2 Hebbian MF–VN plasticity

For the Hebbian learning, the w-nullcline is given by
Eq. (27), and the v-nullcline derived from Eq. (13) becomes

v ¼ v0 þ h4
h4 � h6

w� w0ð Þ: ð32Þ

The equilibrium is given by

w� ¼ w0 þ h1 h4 � h6ð Þ R� R0ð Þ
h1h6 � h3h4 þ h3h6

; ð33Þ

v� ¼ v0 þ h1h4 R� R0ð Þ
h1h6 � h3h4 þ h3h6

; ð34Þ

e� ¼ h3 �h4 þ h6ð Þ R� R0ð Þ
h1h6 � h3h4 þ h3h6

: ð35Þ

Because the relative magnitudes of η1η6 and η3η4 are
indecisive, the sign of η1η6−η3η4+η3η6 is indefinite.

A.3 PC-driven MF–VN plasticity

For the PC-driven learning, the slow nullcline derived from
Eq. (15) becomes

v ¼ v0 � h4
h6

w� w0ð Þ; ð36Þ

and the equilibrium is given by

w� ¼ w0 � h1h6 R� R0ð Þ
h1h4 þ h1h6 þ h3h6

; ð37Þ

v� ¼ v0 þ h1h4 R� R0ð Þ
h1h4 þ h1h6 þ h3h6

; ð38Þ

e� ¼ h3h6 R� R0ð Þ
h1h4 þ h1h6 þ h3h6

: ð39Þ

Appendix B: Fast–slow analysis for PC-driven PC–VN
plasticity

For PC-driven PC–VN plasticity, we can analytically obtain
the equilibrium solutions. The initial synaptic weights are
w=w0, v=v0, and b=b0, which are chosen to yield the initial
gain R0. This condition together with Eqs. (16) and (18)
provides the relations:

R0 � v0 þ b0 w0 þ y0ð Þ � z0 ¼ 0; ð40Þ

h4 w0 þ y0 � yref
� �� h6b0 ¼ 0: ð41Þ

Because we assumed η1≫η3 and η4≫η6, there are two
equilibria (w*, b*) given by

w0 � h6 R� v0ð Þ
h4 w0 þ y0ð Þ ;

v0 � R

w0 þ y0

� �
ð42Þ

and

�y0 þ h6 R� v0 � z0ð Þ
h4 w0 þ y0ð Þ ; b0 � h4 w0 þ y0ð Þ

h6
þ R� v0 � z0

w0 þ y0

� �
:

ð43Þ
In both solutions, the final error is

e� ¼ h6 R� v0 � z0ð Þ R� R0ð Þ
h4 w0 þ y0ð Þ2 ; ð44Þ

which is small. We discard the second solution because it is
unstable.

Appendix C: Gain and phase learning with dynamic
neural responses and MF–VN plasticity

With f (a)=sin(a), we obtain <x>=<u>=0, <sin(ωt+θ)x>i=
cos(θ−φi)/2, <xut>i , j = <uxt>j ,i = cos(ψj−φi)/2, and
<xxt>i, j = cos(φj−φi)/2. The signals with closer phase leads
are more correlated. Then, Eq. (8) reads

dwi

dt
¼ � h1

2

	
R� R0ð Þ cos q � aið Þ

�
Xm
j¼1

cos y j � ai


 �
vj � v0j
� �

þ
Xn
j¼1

cos aj � ai

� �
wj � w0j

� �


�h3n wi � w0ið Þ: ð45Þ
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C.1 CF-driven MF–VN plasticity

With the CF-driven learning rule, Eq. (11) reads

dvi
dt

¼ h4
2

	
R� R0ð Þ cos q � y ið Þ

�
Xm
j¼1

cos y j � y i


 �
vj � v0j
� �

þ
Xn
j¼1

cos aj � y i

� �
wj � w0j

� �


� h6m vi � v0ið Þ:
ð46Þ

In terms of the order parameters defined by

Wc ¼
Xn
i¼1

cos ai wi � w0ið Þ; Ws ¼
Xn
i¼1

sin ai wi � w0ið Þ;

Vc ¼
Xm
i¼1

cosy i vi � v0ið Þ; Vs ¼
Xm
i¼1

siny i vi � v0ið Þ;

the equilibrium for the desired output R sin (ωt+θ) is
obtained by solving

W �
c ¼ � η1

2η3n

"
R� R0ð Þ cos θ

Xn
i¼1

cos2 φi

þ R� R0ð Þ sinθ
Xn
i¼1

cosφi sinφi

þ ðW �
c � V �

c Þ
Xn
i¼1

cos2 φi

þ ðW �
s � V �

s Þ
Xn
i¼1

cosφi sinφi

#
;

W �
s ¼ � η1

2η3n

"
R� R0ð Þ cos θ

Xn
i¼1

cosφi sinφi

þ R� R0ð Þ sinθ
Xn
i¼1

sin2 φi

þ W �
c � V �

c

� �Xn
i¼1

cosφi sinφi

þ W �
s � V �

s

� �Xn
i¼1

sin2 φi

#
;

V �
c ¼ η4

2η6m

"
R� R0ð Þ cos θ

Xm
i¼1

cos2 ψi

þ R� R0ð Þ sinθ
Xm
i¼1

cosψi sinψi

þ W �
c � V �

c

� �Xm
i¼1

cos2 ψi

þ W �
s � V �

s

� �Xm
i¼1

cosψi sinψi

#
;

V �
s ¼ η4

2η6m

"
R� R0ð Þ cos θ

Xm
i¼1

cosψi sinψi

þ R� R0ð Þ sinθ
Xm
i¼1

sin2 ψi

þ W �
c � V �

c

� �Xm
i¼1

cosψi sinψi

þ W �
s � V �

s

� �Xm
i¼1

sin2 ψi

#
:

The phase leads ’i and ψi are assumed to be distributed
uniformly on [0,2π] and [−Δψ, Δψ], respectively. Assum-
ing that n and m are large, we have, for example,

Xn
i¼1

cos2ai ¼ n

2p

Z 2p

0

1þ cos 2a
2a

da ¼ n

2
: ð47Þ

For notational convenience, we write Ac(Δψ)=1+sin 2Δψ/
2Δψ and As(Δψ)=1−sin 2Δψ/2Δψ. We note that 1≤Ac≤2,
and As decreases in Δψ. Particularly, As≅2Δψ

2/3 becomes
small as Δψ→0. Then, the equilibrium is given by

V �
a ¼ h3h4 R� R0ð Þ cos qAa Δy

� �
h1h6 þ 4h3h6 þ h3h4Aa Δy

� � ; ð48Þ

W �
a ¼ � h1h6 R� R0ð Þ cos q

h1h6 þ 4h3h6 þ h3h4Aa Δy
� � ; ð49Þ

where α=c or s. The amount of the memory stored in the
MF–VN synapses is given by

Xm
i¼1

sin wt þ y ið Þ v�i � v�0i
� �

¼ V �
c sinwt þ V �

s coswt ¼ rD R� R0ð Þ sin wt þ qDð Þ;
ð50Þ
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where

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 q

1þ h1h6þ4h3h6
h3h4Ac Δyð Þ

	 
2 þ sin2 q

1þ h1h6þ4h3h6
h3h4As Δyð Þ

	 
2
vuuuut ; ð51Þ

qD ¼ tan�1
1þ h1h6þ4h3h6

h3h4Ac Δyð Þ
1þ h1h6þ4h3h6

h3h4As Δyð Þ
tan q

2
4

3
5: ð52Þ

If MFs create any delay elements (Δψ=π, Ac(Δψ)=As(Δψ)
=1), Eq. (52) results in θD=θ, that is, the perfect phase
learning by the MF–VN synapses. However, rD=η3η4/(η1η6
+η3η4+4η3η6) can be considerably smaller than the ideal
value (=1) because η1η6 may be as large as η3η4 in general.
The MF–VN synapses learn the desired gain only for a
restricted parameter range, and gain transfer is not robust
against parameter variation. This is in line with the result of
the gain-only theory.

Furthermore, the discrepancy between θD and θ cannot
be ignored when Δψ=O((η1η6/η3η4)

1/2) i.e. when Δψ is of
the order of (η1η6/η3η4)

1/2. Because η1≫η3 and η4≫η6, one
cannot tell without additional information whether
η1η6≫η3η4, η1η6≅η3η4, or η1η6≪η3η4. Because η1η6/η3η4
is not necessarily small, transfer can degrade even for a
large Δψ.

C.2 Hebbian MF–VN plasticity

With the Hebbian rule, Eq. (13) reads

dvi
dt

¼ h4
2

"Xm
j¼1

cos y j � y i


 �
vj � v0j
� �

�
Xn
j¼1

cos aj � y i

� �
wj � w0j

� �#

� h6m vi � v0ið Þ: ð53Þ

By solving the equilibrium in combination with Eq. (45),
we have

V �
a ¼ h1h4 R� R0ð Þ cos qAa Δy

� �
�4h3h4Aa Δy

� �þ 4h1h6 þ 16h3h6
; ð54Þ

W �
a ¼ h1 R� R0ð Þ cos q h4Aa Δy

� �� 4h6
� �

�4h3h4Aa Δy
� �þ 4h1h6 þ 16h3h6

; ð55Þ

which leads to

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 q

4h1h6þ16h3h6
h1h4Ac Δyð Þ � 4h3

h1

	 
2 þ sin2 q

4h1h6þ16h3h6
h1h4As Δyð Þ � 4h3

h1

	 
2
vuuuut ;

ð56Þ

qD ¼ tan�1

h1h6þ4h3h6
h1h4Ac Δyð Þ �

h3
h1

h1h6þ4h3h6
h1h4As Δyð Þ �

h3
h1

tan q

2
4

3
5: ð57Þ

When MFs create any phase leads (Δψ=π), Eq. (57)
implies perfect transfer of the target phase (θD=θ).
However, rD=η1η4/(4η1η6+16η3η6−4η3η4), derived from
Eq. (56), is indefinite because 4η1η6+16η3η6−4η3η4 can
take an arbitrary value. Consequently, unrealistic phenomena
such as overlearning (rD>1) can arise in the model. Regard-
ing phase learning, the error is prominent when Δψ is as
small as Δψ=O((η6/η4)

1/2) (recall η4≫η6), which is suitable.

C.3 PC-driven MF–VN plasticity

With the PC-driven learning, Eq. (15) reads

dvi
dt

¼ � h4
2

Xn
j¼1

cos aj � y i

� �
wj � w0j

� �� h6m vi � v0ið Þ:

ð58Þ
We derive

V �
a ¼ h1h4 R� R0ð Þ cos qAa Δy

� �
h1h4Aa Δy

� �þ 4h1h6 þ 16h3h6
; ð59Þ

W �
a ¼ � 4h1h6 R� R0ð Þ cos q

h1h4Aa Δy
� �þ 4h1h6 þ 16h3h6

; ð60Þ

which in combination with Eq. (50) yields rD (Eq. (23)) and
θD (Eq. (24)). The amount of the memory stored in the
PF–PC synapses is represented by

�W �
c sinwt �W �

s coswt ¼ rI R� R0ð Þ sin wt þ qIð Þ; ð61Þ

which yields rI (Eq. (25)) and θI (Eq. (26)).
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