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Bridging Rate Coding and Temporal Spike Coding by Effect of Noise
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It is controversial whether temporal spike coding or rate coding is dominant in the information pro-
cessing of the brain. We show by a two-layered neural network model with noise that, when noise is
small, cortical neurons fire synchronously and intervals of synchronous firing robustly encode the signal
information, but that the neurons desynchronize with moderately strong noise to encode waveforms of
the signal more accurately. Further increase of noise just deteriorates the encoding. A positive role of
noise in the brain is suggested in a meaning different from stochastic resonance, coherence resonance,
and deterministic chaos.
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Firing rates of spikes in the brain are thought to repre-
sent information in external stimuli. However, calculation
in the brain often seems to complete in a shorter time scale
than the time required for temporal averaging of spike sig-
nals necessary for obtaining firing rates. Actually, pre-
cisely timed reproducible spiking has been experimentally
observed with a precision of milliseconds [1], suggesting
the importance of precise spike timing in information pro-
cessing. The precisely timed synchronous firing has also
been found in different neural systems, and may represent
coherent information with synchronous neurons forming a
dynamical assembly [2]. Furthermore, a downstream neu-
ron can also fire more easily when incident spikes arrive
synchronously than when their arrival timing is not cor-
related [3]. Temporal spike coding schemes assume that
neurons exchange information encoded by precisely timed
spikes at an increased speed with decreased energy to re-
alize brain functions. Shadlen and Newsome, on the other
hand, showed that a short-term firing rate can be reliably
estimated by ensemble averaging of about 100 neurons, or
population rate coding, without resorting to classical tem-
poral averaging [4]. It is still controversial which coding
scheme is used in which parts of the brain. Appropriate
coding strategies may be selected according to anatomical
locations and functions in the brain [2,3].

In this Letter, we show by model analysis that the popu-
lation rate coding and the temporal spike coding can be
bridged with a noise intensity parameter.

We examine a two-layered neural network composed of
sensory neurons and cortical neurons with noise described
in Fig. 1. We use the integrate-and-fire neurons [5] for n;
sensory neurons. The membrane potential x;(r) of the ith
sensory neuron is obtained by perfect integration of the
continuous external signal S(¢). The neuron fires when
xi(t) reaches 1. Then x;(r) is reset to the resting poten-
tial x;(#) = O to restart integration. The initial condition
on the membrane potential of each neuron is determined
randomly and independently according to the uniform dis-
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tribution on [0, 1]. Our results hold even if the sensory
neurons have voltage leak [6]. The n, cortical neurons
are the leaky integrate-and-fire neurons [6]. Each corti-
cal neuron receives delta-shaped spike trains from nj =< n;
randomly chosen sensory neurons, and each pair of corti-
cal neurons share a part of the sensory neurons. The ratio
of the shared connections to all the connections from sen-
sory neurons to a cortical neuron is fixed to 0.5. The state
of the ith cortical neuron is represented by the membrane
potential v;(r) with the threshold v;(¢r) = 1 and the resting
potential v;(r) = 0. When it fires, an instantaneous feed-
back spike with the amplitude € and the synaptic delay 7
is sent to the other cortical neurons. The dynamics of the
cortical neurons is described by
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where y > 0 is the membrane leak rate, and 6 is the delta
function. T} ; is the time when the jth spike generated by
the i’th sensory neuron arrives at the ith cortical neuron.
The delay between the sensory layer and the cortical layer
is uniformly zero or, equivalently, uniformly constant. € is
the amplitude of a spike from a sensory neuron. T,-//,j is
the jth firing time of the i’th cortical neuron. &;() is the

cortical neurons

Sensory neurons

FIG. 1. Architecture of the model neural network.
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Gaussian white noise with the standard deviation o, which
is applied at every integration time step of 0.02 ms. The
ith cortical neuron receives incident spikes only from the
i'th sensory neurons, where i’ € S;, |S;| = n} with n] =
ni. A cortical neuron receives 100-200 spikes to emit
one spike, and the firing rate is equal to 20 Hz. We set
np = 480, n{ = 240, ny = 30, and the delay 7 = 2.5 ms
[3]. Finally, a virtual coincidence detector (CD) observes
synchronous firing [7]; the CD neuron fires when, and only
when, incident spikes arrive from more than n,/2 cortical
neurons within ¢, = 1.5 ms [8]. In addition to synchro-
nization, we analyze the population firing rate calculated
as the ensemble average of spike trains generated from all
the cortical neurons [4].

We choose S(t) to be the chaotic time series generated
from the Rossler and Lorenz systems modeling nonrandom
dynamical rules contained in complex external stimuli such
as visual scenes and sounds. The Rossler equations are
represented by x = a(—y — z), y = a(x + 0.36y), z =
al0.4 + z(x — 4.5)], and we define S(z) = 0.02 + 0.001x.
While the change rate a = 35 in Fig. 2, we set a = 100
in Fig. 3 to investigate the possibility of the population
rate coding with asynchronous firing [4]. Similarly, for the
Lorenz equations represented by x = a(10.0y — 10.0x),
y =a(28.0x —y — xz), and z = a(—8.0/3.0z + xy),
we define S(r) = 0.019 + 0.0014x. We set a = 7 in
Fig. 2, and a = 30 in Fig. 3.

It is known that interspike intervals produced by a neu-
ron with a continuous external stimulus S(7) can preserve
its deterministic information [5,9]. The determinism of
S(r) makes interspike intervals predictable in a short term

and useful for reconstructing the original strange attractor
generating S (7). Furthermore, we have shown that a single
cortical neuron receiving spatiotemporal spike trains from
sensory neurons can also encode stimulus information in
interspike intervals [6]. Here we explore robust informa-
tion coding schemes by multiple cortical neurons since the
interspike interval coding by a single cortical neuron is
possible but not robust.

Reconstruction of the deterministic information in S(z)
with the intersynchronization intervals [7] of the cortical
layer is shown in Fig. 2. Figure 2(a) demonstrates that the
cortical neurons nearly synchronize in spite of the inho-
mogeneity in the spike inputs and the synaptic delay when
o = 0. We next examine the determinism of the intersyn-
chronization intervals using the surrogate data methods
[10]. The strange attractor generating S(¢) can be recon-
structed by delay coordinates with the intersynchronization
interval time series {¢; : t; = Ty — Ti_,}, where T} is the
time of the kth synchronous firing [7]. To evaluate the
determinism of {r}}, we examine the deterministic predict-
ability of {t;} by a local prediction algorithm [5,9]; we
transform {r;} into a d-dimensional reconstruction space
with delay coordinates to obtain the state points (15, th—1
i tig+1). To perform the h-step prediction of t,’CO, we
search [y nearest neighborhoods ().t} —1,.... 1} —g+1),
1. = {ls lo‘ tod(gco,gml;l,.A.l.,t}(o_dir}g. gllloen t/he prede}f-
tion 7 4+, is define 1 = 1/lp 2.> . e
effecti\geness of this algorﬁ]ﬁrﬁl is evaluaté:d1 b§;+t}ile nor-
malized prediction error defined by NPE(h) = ((?,'(0+ n =
1 )2 [ (m = 1}, ,)*)Y/2, where (---) denotes the av-
erage over sample points, and m is the mean of {t}}. To
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FIG. 2. Behavior of the neural network and estimation of the external stimuli using intersynchronization intervals with € = 0.02,
v = 0.060 ms™!, and o = 0. (a) Activities of 30 cortical neurons. (b),(d) NPE(h)s for the intersynchronization interval time series
of the cortical neurons (+), the FS (X), and the AAFT (*) surrogate data, accompanied by the error bars showing the standard
deviations for 100 surrogate data for not only (b),(d) but also for (c),(e). The embedding dimension d = 4. (c),(e) NPE(1)s for the
intersynchronization intervals, the FS, and the AAFT surrogate data with various embedding dimensions. (a)—(c) The results for the
Rossler input with € = 0.0105. (d),(e) The results for the Lorenz input with € = 0.0095.
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FIG. 3. Performance measurements of the synchronization-
based coder and the population rate coder for various noise
levels with e = 0.003, € = 0.007, and y = 0.025 ms™~'. Order
parameters syn (X), r(¢) (+), and the correlation coefficient be-
tween S(¢) and the short-term population firing rate of the cor-
tical neurons (*) calculated by using time bins with the width
4.5 ms are shown. The inputs are generated from the Rossler
system (a) and the Lorenz system (b).

examine determinism of the time series, we also calculate
the NPE(h) of the two surrogate data: the Fourier shuffled
(FS) surrogate and the amplitude adjusted Fourier transform
(AAFT) surrogate [10]. The length of {;} used for the an-
alysis is equal to 4096, and the last 10% of the intervals
are predicted by the first 90% with /[y = 12. The intersyn-
chronization intervals have significant determinism com-
pared with surrogate data; Figs. 2(b)—2(e) indicate that the
deterministic information about S(z) is encoded in the in-
tersynchronization intervals of the leaky integrate-and-fire
cortical neurons.

The mechanism of the interspike interval reconstruction
by single neurons driven by superimposed spike trains [6],
or by continuous inputs such as S(¢) [5,9], underlies the
intersynchronization interval reconstruction [7]. Conse-
quently, intersynchronization intervals encode S(7) with an
instantaneous rate of synchronous firing, and this coding
should be more robust than coding by a single neuron.
The information transmission rate is limited by the dura-
tion of typical intersynchronization intervals. The stimulus
information temporally finer than that length is discarded
through the integration process.

Real neurons are subject to various types of noise that
may cause neurons to desynchronize. The incorporation
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of noise may lead to different consequences. Actually, we
can consider the other extreme in which each cortical neu-
ron encodes a different feature of S(r) with asynchronous
firing. In this scheme, displacement in the firing time of
each single spike may directly affect the signal estimation,
in contrast to the synchronization-based coding. How-
ever, the coding is robust enough against the perturbation
since single spike displacement influences the coding per-
formance just slightly. The whole spatiotemporally asyn-
chronous spikes from the cortical layer may preserve more
precise information on the temporal waveform of S(z) than
synchronous spikes. We apply additive noise to the cortical
neurons as a possible means to drive the neural network out
of synchrony. In Fig. 3, the degree of synchronous firing is
shown for various noise levels. The order parameter “syn”
defined by the ratio of the number of synchronous firing to
the number of single-neuron firing measures the synchrony
with precision t#,,. The synchrony of membrane potentials
of the cortical neurons is also evaluated by the order pa-
rameter [11] defined by r(1) = | X.j2, €27i0|/n,. The
full synchrony gives syn = 1 and r(r) = 1, while the full
asynchrony results in syn = 0 and r(¢) = 0.

For both the Rossler and Lorenz inputs, very weak noise
(o €[0,0.002]) does not prohibit synchronous firing of
cortical neurons. In this situation, the information trans-
mission rate is low since synchronous neurons redundantly
encode the same aspect of a stimulus. Actually, Fig. 3
demonstrates small values of the correlation coefficient
between S(¢) and the short-term ensemble firing rate [4]
of the cortical neurons at this noise level, indicating that
the precise stimulus estimation based on the rate of syn-
chronous firing is impossible since time averaging over
intersynchronization intervals smooths out high-frequency
information on S(z).

On the other hand, the cortical neurons fire less syn-
chronously as the noise increases (o = 0.003). When
the noise level is intermediate (o € [0.003,0.008]), the
cortical neurons desynchronize and each neuron encodes a
different aspect of S(¢). For demonstration, let us suppose
that S(¢) has two peaks during an interspike interval. Then
networks with asynchronously firing neurons can capture
both peaks; some neurons encode the first peak of S(¢) by
firing nearby while others fire near the second peak to en-
code it. However, the synchronously firing cortical neu-
rons encode only one peak at best since the cortical layer
has only one chance to place its synchronous firing within
a duration of the interspike interval. Indeed, when o €
[0.003,0.008], the collective spike trains can restore more
accurate information on waveforms of S(z) by the popu-
lation rate coding than a single neuron or synchronous
neurons can. When the cortical neurons fire entirely asyn-
chronously, they can encode S() with the precision propor-
tional to 1/n,. Still stronger noise (o0 = 0.012) seriously
affects firing events. Consequently, signal integration
by the cortical neurons is too deteriorated for reliable
population rate coding although the neurons are well
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desynchronized. Figure 3 suggests that there are optimal
noise levels that realize the most accurate population rate
coding for both the Rossler and Lorenz inputs.

Noise in sensory neurons is important for the interspike
interval reconstruction of a single cortical neuron [6]. Here
asynchronous firing of cortical neurons induced by noise
may also play a positive role in the brain in a meaning
different from stochastic resonance, coherence resonance,
and deterministic chaos. The role of noise examined here
is to help the cortical neurons collect versatile pieces of
stimulus information by making them desynchronize. The
coding by synchronous firing may be effectively used when
animals are engaged in already learned tasks. Once un-
known stimuli or new tasks are given, they have to adapt
to the new circumstances. Until they complete the adap-
tation, the neurons may desynchronize to benefit from the
population rate coding that encodes more signal informa-
tion than the synchronization-based coding. It may enable
them to reach an optimal solution as fast as possible. The
transition from synchronization to desynchronization and
vice versa also occurs when the stimulus or the task is
switched [2]. The change in noise as background activi-
ties in cooperation with the stimulus/task-dependent inputs
may contribute to such brain dynamics.

We thank I. Tokuda for helpful discussions. This work
is supported by the Japan Society for the Promotion of
Science.

Note added.— After submission of this Letter, we found
an interesting related paper by van Rossum, Turrigiano,
and Nelson [12].
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