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Synchronization of pulse-coupled excitable neurons
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Collective behavior of pulse-coupled oscillatory neurons has been investigated widely. In many cases,
however, real neurons are intrinsically not oscillatory but excitable. The networks of excitable neurons can
have their own characteristic dynamics, and they are of interest also from the viewpoint of functional assem-
blies. In the present paper, the collective behavior of pulse-coupled excitable neurons has been investigated
using phase description. It is shown that full synchronization is achieved in networks of excitable leaky
integrate-and-fire neurons and discrete-time Nagumo–Sato neurons. The cooperative roles of external spike
inputs, decay of internal states, and feedback spikes are explained. Enhancement of synchronization by refrac-
toriness and noise is also reported.

DOI: 10.1103/PhysRevE.64.051906 PACS number~s!: 87.18.Sn, 05.45.Xt, 07.05.Mh
yn

e-
ns
n

ar
m
u

se
sy
lu

th
o
lla
nt
g
sy
lu
th
o-
in
ica
b
b

th
el
a

nt

u

f.
ll
o

-

cal
oints
re-
rons

-
l
av-
ral

on
tes

an
her

w-
nd

ne-

is
by

rre-
he-
ar.
el of
are
ntly,
the
ter-
liar
s-
p-

ing
ural
I. INTRODUCTION

Investigations in various fields have observed the s
chrony of coupled elements such as synchronous firing
neurons@1–4# and the synchronous flashing of tropical fir
flies @5#. Particularly, synchronous firing of cortical neuro
has been widely studied both by physiological experime
and by model analysis. Eckhornet al. @1# and Grayet al. @2#
investigated the synchronous firing of neurons in cat prim
visual cortex, and found that neurons that have the sa
preferred stimulus are likely to synchronize. It is pointed o
that synchronization can serve as a mechanism for repre
ing coherent features such as objects and motions. The
chronized neurons driven by a common preferred stimu
form a dynamical functional assembly. Vaadiaet al. @3#
showed that the correlations between firing neurons in
frontal cortex are modulated by behavioral tasks, and R
riguezet al. @4# suggested that synchronized gamma osci
tions ~30–80 Hz! in neuronal discharge play an importa
role in human perception, contributing to feature bindin
The neurons that belong to a certain assembly can de
chronize to join different assemblies when another stimu
comes. Synchronization is also important with regard to
information coding; the coding of information with synchr
nous firing can be robust against noises and disorder
small number of neurons. Many theoretical and numer
investigations of synchronization have been motivated
these biological evidences for synchronization, and also
various physical and chemical oscillation phenomena.

The investigations of the synchronization began with
analysis of oscillators coupled by gap junctions or mean fi
@6–10#. Pulse-coupled neural networks, however, have
tracted more attention these days since neurons usually i
act by sending and receiving spikes. Peskin@11# derived the
synchronization condition for two pulse-coupled model ne
rons. Mirollo and Strogatz@12#, and Kuramoto@13# applied
phase reduction technique@14#, to extend the results in Re
@11#. They showed that, for almost all initial conditions, fu
synchronization is achieved in pulse-coupled networks
leaky integrate-and-fire~LIF! neurons. Although their mod
1063-651X/2001/64~5!/051906~13!/$20.00 64 0519
-
of

ts

y
e

t
nt-
n-
s

e
d-
-

.
n-
s
e

a
l
y
y

e
d
t-
er-

-

f

els are too simple to represent the behavior of biologi
neurons, these approaches were the important starting p
of studying pulse-coupled neural networks. Then these
sults have been extended to various neuron models: neu
with a constant positive delay@15–17#, or a delay given by
a-function @15,16,18–22#, linear neurons@23–25#, neurons
linked by inhibitory coupling @15,20,22,26–28#, neurons
linked by nonuniform coupling@15,19,21,25,29#, heteroge-
neous neurons@18,23–25,30#, and neurons linked by gener
alized coupling with delay@31#. The spike response mode
@7# has also been studied to investigate the collective beh
ior of neural networks. The dynamical behavior of a neu
network depends very much on these factors as well as
external inputs and the initial conditions. Clustered sta
@17,22,27,32,33#, stable asynchronous behavior@18,20,34#,
bursting @20#, and traveling waves@16,19–21# have also
been found in other situations.

In some works, a single neuron was assumed to be
inherent oscillator even without feedback spikes from ot
neurons @12,13,16–27,29,30,34#. The inherent oscillations
are induced by external bias. Biological neurons are, ho
ever, more naturally quiescent with the resting potential a
excitable for suprathreshold stimuli rather than sponta
ously oscillatory.

The dynamics of some networks of excitable neurons
considered to resemble that of oscillatory ones driven
external biases and feedback inputs@20#, based on approxi-
mation of the spike inputs to excitable neurons by the co
sponding continuous inputs to oscillatory neurons. Nevert
less, it is worth studying pulse-driven neurons in particul
Networks of excitable neurons can be regarded as a mod
a certain functional assembly of cortical neurons that
receiving feedback spikes from other neurons. Conseque
the properties of the inputs can be different from those of
continuous counterparts that are often identified with ex
nal stimuli. Furthermore, excitable systems can have pecu
dynamics different from oscillatory systems. It is also po
sible that modulated interspike intervals of spike timings re
resent the signal information in spatiotemporal spike cod
schemes to be engaged in information processing in ne
©2001 The American Physical Society06-1
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systems@31,35#. Excitable systems are also related to as
chronous computation in which the elements exchange in
active spikes asynchronously to carry out information p
cessing.

In the work reported in this paper, we study networks
excitable but not intrinsically oscillatory neurons. The exc
able neurons that fire with the help of external spikes
addition to feedback interactions are considered. These
rons are different from those in Refs.@20,36# whose firing is
mainly based on feedback interactions.

We investigate the collective dynamics of these netwo
by using phase reduction methods@8,14,32,33,37#, and unify
the descriptions of oscillatory and excitable systems.
deal here with two neuronal models. In Sec. III we show t
coupled excitable LIF neurons@17,36,38,39# synchronize
based on the similar mechanism to that of oscillatory on
The effects of noise and refractoriness are also exami
We then investigate networks of Nagumo–Sato~NS! neu-
rons@40# in Sec. IV. The NS neuron are discrete in time a
can be regarded as both oscillatory and excitable. Our
pose in considering this model is to present a method
unify discrete-time systems and continuous-time syste
with the help of phase description. We show a mechan
that leads to full synchronization in coupled NS mode
Noise-induced synchronization is also observed.

II. PULSE-COUPLED OSCILLATORY LEAKY
INTEGRATE-AND-FIRE NEURONS

Mirollo and Strogatz@12#, and Kuramoto@13# showed
that pulse-coupled identical oscillatory LIF neurons even
ally synchronize under almost any initial condition. A
though we are interested in excitable systems in this pa
we briefly review their results because we will be defini
the phase variable of an excitable LIF neuron in compari
with that of an oscillatory LIF neuron. The dynamics of a
oscillatory LIF neuron can be represented by

dx

dt
5I 02gx, ~1!

wherex is the internal state corresponding to the membr
potential,g is the leak rate, andI 0 is the external bias with
I 0.g. The external input is implicitly assumed to be co
tinuous. Whenx exceeds the given threshold, the neuron fi
andx is reset to the resting potential. Without losing gen
ality, the threshold and the resting potential can be set e
to 1 and 0, respectively. The periodT of the firing is given by

T5
1

g
ln

I 0

I 02g
.

Mirollo and Strogatz@12# examined a network of pulse
coupledN neurons in which a firing neuron sends a spike
amplitudee to all the other neurons. They assumed instan
neous interactions, common external inputI 0 to all the neu-
rons, and uniform all-to-all couplings. To clarify the dynam
ics of individual neurons, they introduced the phase varia
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fP@0,1#. f corresponds tox in a one-to-one manner, an
the transformation is given by

f5g~x!5g21 ln
C

C2x
, ~2!

where C5(12e2g)21. It follows that g(0)50, g(1)51,
and

df

dt
5

1

T
. ~3!

The phase of a neuron receiving a spike from another neu
jumps from f to t~f!, and the phase return mapt~f! is
expressed as

t~f!5g@g21~f!1e#5f2
1

g
ln$12eegf~12e2g!%.

~4!

We outline the typical behavior ofN neurons along@12#.
First, the convexity ofg21(f) ~g218.0 and g219,0! is
essential, and it leads to

dt

df
5

1

12
e

C
egf

.1. ~5!

We denote the phase variable of thei th neuron byf i . The
aggregated dynamics is equivalent to the dynamics ofF
5(f1 ,f2 ,...,fN) on a N-dimensional torus.F has neutral
stability almost everywhere because of Eq.~3!. F evolves
with local instability when a stimulating spike is emitte
from a neuron;N21f i ’s correspond to the recipients of th
spike, and they have local expansiveness owing to Eq.~5!.
Consequently, the trajectory ofF is essentially repulsive.F
travels ergodically on the torus until it comes into an attra
tive basin of absorption@12#, where multiplef i ’s are coa-
lesced into an identical value. After absorption, the virtu
dimension ofF is decreased since once the two phase val
become equal, they remain equal forever.N neurons finally
synchronize by repeating this procedure.

Since synchronous firing with more neurons drives
system to synchrony more strongly. As a result, full synch
nization is achieved in an accelerated manner. This phen
enon is called avalanche.

We note that, owing to Eq.~5!, two trajectories starting
from two close points on theN-dimensional torus may take
quite different courses to synchronization. Full synchroni
tion is ensured by orbital ergodicity combined with absolu
absorption. This is in contrast with ubiquitous synchroniz
tion scenarios in which local stability assures synchroni
tion. The synchronization conditions have been widely d
cussed and extended to various neural networks~see Sec. I!.
6-2
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III. PULSE-COUPLED EXCITABLE LEAKY
INTEGRATE-AND-FIRE NEURONS

As mentioned in Sec. I, the collective behavior of osc
latory LIF neurons has been widely investigated. On
other hand, LIF neurons with excitable dynamics, which
ceive pulselike external inputs, seem more plausible in
cortex. In contrast to the neuron model whose dynamic
represented by Eq.~1!, the model of such a neuron must b
intrinsically nonoscillatory. The state of such a LIF neur
decays exponentially with time to the resting level when
spike input~either external or feedback! is received or when
subthreshold inputs are received. When occasional incid
spikes arrive at a suprathreshold rate, each spike pushe
the state value successively to the threshold, and make
neuron fire. We call this kind of neuron excitable. Excitab
LIF neurons can often model biological neurons more pl
sibly than oscillatory ones. For example, neurons in a fu
tional assembly receive spikes from neurons outside the
sembly as well as feedback spikes from constituent neu
within the assembly. In the network models of excitable L
neurons, those spikes from outside the assembly can be
sidered to be coming from a source of external spikes.
show that neurons in a network synchronize in most ca
when external spikes are periodic, in a manner similar to
oscillatory case. We also extend the proof to the case
aperiodic external spikes to elucidate the possibilities
other scenarios of collective behavior.

We use the following excitable LIF neuron mod
@17,36,38,39#. In this model, an external input is a spike wi
an amplitudeē rather than a constant or smoothly varyin
bias. The response of the excitable LIF neuron to exte
spikes is represented as follows:

x~ t !5@x~ tk!1 ē #e2ḡ~ t2tk!, ~ tk<t,tk11!, ~6!

wherex(t)P@0,h# is the internal state at timet, h.0 is the
threshold,ḡ.0 is the decay rate, andtk is the instant when
the neuron received thekth external spike. When the neuro
receives a spike att, the state jumps instantaneously fro
x(t) to x(t)1 ē. Whenx(t)1 ē reaches the fixed thresholdh,
the neuron fires and the state is reset to 0.

We assume here thatN excitable LIF neurons are couple
by spikes and each neuron receives feedback spikes
other neurons. We also assume that this interaction is ins
taneous, and we denote the amplitude of a stimulating s
by e. All the neurons receive the same external spikes
the neuronal connections are all-to-all and uniform. The s
of the i th neuron (1< i<N) at time t is denoted byxi(t).

We investigate what kind of collective behavior appe
in response to the external inputs with the probability den
r(t) of interspike intervals.r(t) satisfies*0

`r(t)51, and
r(t)50, (t<0). First of all, there is a necessary conditio
that an excitable LIF neuron fires spontaneously, receiv
external spikes; external spikes must come at a higher
than a critical value 1/t0 with a finite probability. The neu-
rons might keep firing due to feedback spikes even if
external firing rate is slightly less than 1/t0 . However, 1/t0 is
a good lower bound unlesseN is large enough. This is be
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cause we could not expect the contribution of feedba
spikes if external spikes arrived at a significantly lower ra
to make every neuron quiescent. The sufficient condition
sustained firing is

inf suppr~ t !,t0 , ~7!

where supp denotes the support of a function, andt0 is de-
fined so that it satisfies

he2ḡt01 ē5h. ~8!

If Eq. ~7! is not satisfied, thenxi(t) finally decays to zero
unlesseN is large enough. Under this condition, a sufficie
condition for full synchronization is given by the followin
theorem. The proof of this theorem is given in the Append

Theorem: If Eq. ~7! is satisfied and sup suppr(t).t0 ,
thenN excitable LIF neurons synchronously fire with a fini
probability. Furthermore, synchronization can occur ev
without pulse coupling among neurons.

We should say that this route to full synchronization
biologically exceptional;k1 external spikes with long enoug
interspike intervals contract the distances among the n
ronal statesxi(t)’s without making the neurons fire, and the
k2 external spikes with a suprathreshold rate must arrive
order to let them fire simultaneously. This synchronizati
scheme is also unrealistic because the firstk1 steps of syn-
chronizing process can be easily disturbed by external sp
with smaller interspike intervals. Moreover, synchronizati
without mutual interactions is biologically implausible@1#.
We are instead interested in more realistic routes to sync
nization driven by pulse interactions. To develop the ana
sis, we extend the phase reduction of oscillatory syste
@8,12–14,32,33# to excitable systems. As is shown late
phase description is useful for treating the effects of de
and of the jump of the state in a unified manner. It is a
useful in deriving synchronization conditions for puls
coupled excitable neurons that correspond to those for o
latory LIF neurons@12,13#.

We first treat the case in which external spikes are p
odic with periodT0 ; r(t)5d(t2T0). An excitable LIF neu-
ron @Eq. ~6!# approaches an oscillatory LIF neuron@Eq. ~1!#
in the limit asē→0 andT0→0 with ē andT0 satisfying the
conditions below. To benefit from the theoretical results
Ref. @12#, we define the phasefP@0,1# for an excitable LIF
neuron so that these phases are consistent with those fo
oscillatory LIF neuron defined by Eq.~2! in this limit.

Accordingly, we explore the relations amongg, I 0 , ḡ, ē,
andT0 in the limit asē→0 andT0→0. We note thatē and
T0 are not independent when the other variables are fix
We denote byx* the asymptotic value ofx when the thresh-
old h were absent. For an oscillatory LIF neuron, Eq.~1!
yields

x* 5I 0 /g. ~9!

For an excitable LIF neuron, we can determinex* from

~x* 1 ē !e2ḡT05x* . ~10!
6-3
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Given Eqs.~9! and~10!, we know that a necessary conditio
for consistent phase description of excitable LIF neurons

x* 5
I 0

g
5

ē

eḡT021
. ~11!

Another condition is on the increasing rate ofx in the limit as
ē→0 andT0→0. Using Eq.~1!, we have

lim
T0→0

~x1 ē !e2ḡT02x

T0
5

dx

dt
5I 02gx. ~12!

The substitution of Eq.~11! into Eq. ~12! yields

I 02gx5 lim
e→0

~x1 ē !S 12
ēg

ēg1I 0
D2x

1

ḡ
lnS 11

ēg

I 0
D 5

ḡ

g
~ I 02gx!.

Consequently, we haveḡ5g, and we identifyḡ andg in the
following. To guarantee the constant positive phase velo
which oscillatory LIF neurons have@Eq. ~3!#, f5g(x) must
satisfy

g~x!1Df5g@~x1 ē !e2ḡT0#, ~13!

whereDf is the infinitesimal phase shift forT0 independent
of f. Substitution of Eq.~11! into Eq. ~13! yields

dg

dx S 12
gx

I 0
D5

Df

ē
, ~14!

in the limit asT0→0 ~ē→0 andDf→0!. Integrating Eq.
~14!, we have

g~x!52
DfI 0

ēg
ln~ I 02gx!1const.

Applying the boundary conditions

g~0!50 and g~h!51, ~15!

we obtain

g~x!5 ln
ē

ē2~egT021!xY ln
ē

ē2~egT021!h
, ~16!

which is essentially the same as Eq.~2!.
We next proceed to the nonlimiting case in whichē and

T0 are finite. Motivated by Eq.~16!, we postulate thatg(x)
be written in the form

g~x!5B ln
A

A2x
1D ~0<x<h!, ~17!

whereA.h, B.0, andD are parameters to be determine
Also in this case, we require a constant phase velocity w
x is observed at the periodic times of external spikes.
substitute Eq.~17! into Eq. ~13! to obtain
05190
s
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A

A2x
1D1Df5B ln

A

A2
~x1 ē !I 0

I 01 ēg

1D. ~18!

Consequently,

A5x* 5
ē

egT021
,

and

expS Df

B D511
ēg

I 0
,

wherex* is defined in Eq.~11!. By the boundary conditions
specified in Eq.~15!, we have

D50, B5S ln
ē

ē2~egT021!hD 21

.

As a result,g(x) of an excitable LIF neuron has the sam
expression as that of an oscillatory LIF neuron represente
Eq. ~16!. Accordingly we can benefit from the results o
tained for the networks of oscillatory neurons@12,13#; we
expect thatN neurons synchronize in finite time based on t
convexity ofg21. The difference between pulse-coupled o
cillatory and excitable LIF neurons is in their detailed pha
dynamics;f of an excitable LIF neuron drifts to the negativ
direction with the following velocity,

df

dt
52

~egT021!gx

ē2~egT021!x S ln
ē

ē2~egT021!hD 21

,0,

~19!

when input spikes are absent andx,x* . An input spike
makesf jump to the positive direction. As a result, the pha
f is changing with a constant positive velocity on the av
age. According to Eq.~19!, the negative phase shift durin
two external spikes is larger for biggerf sincef is a mo-
notonously increasing function ofx. On the other hand, the
effect of an external spike on the phase shift is qualitativ
similar to that of a feedback spike. Considering Eq.~4!, we
can see that the positive phase shift caused by an exte
spike is larger for biggerf. As a result, the positive phas
shifts caused by external spikes compensate the neg
phase shifts between the external spikes. As a whole,
encounter the dynamics off with a constant phase velocit
when we observe the population of excitable neurons at
5kT0 , (k51,2, . . . ).

The effect of discreteness in input time is nontrivial, b
not grave. Ifxi(t)5h whenever thei th neuron is about to
fire as a result of receiving an external or feedback spike,
convexity ofg holds in the strict sense. In this case, the res
in Ref. @12# is applicable and full synchronization alway
occurs. In general, however,xi(t) exceedsh when the neu-
ron is going to fire. We assume thatxi(t) exceedsh by Dh
when thei th neuron fires. Then a small fluctuation inxi(t) is
negligible because it is absorbed by marginDh when firing.
As a result, attractive basins of clustered states, which h
6-4
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FIG. 1. ~a!, ~b!, ~c! Behavior of 30 excitable LIF neurons coupled by spikes. In the following, we denote by step the time u
integrating Eq.~6!. External inputs are periodic with periodT518 ~steps! and intensityē50.1. The coupling strength ise50.007, and the
decay rate isg50.003~step!21. ~d! Behavior of the synchronization parameterx(t) of the same time series.
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measure zero for oscillatory systems, have positive m
sures. Whether a clustered state is realized depends on i
conditions. Owing to the assumption of absolute absorpt
the final state of coupled neurons is fully synchronized
clustered. Nevertheless, the basins of clustered states oc
only small regions in the phase space; for most initial c
ditions,N neurons fully synchronize in finite time. The syn
chronization of 30 excitable LIF neurons with common p
riodic external spikes is shown in Fig. 1~a!, Fig. 1~b!, and
Fig. 1~c!. Figure 1~d! shows the evolution of the synchron
zation order parameterx(t) defined by

x~ t !5(
i 51

N

(
j 5 i 11

N

d@xi~ t !,xj~ t !#, ~20!

where

d~x,x8!5min~ ux2x8u,ux2x81hu,ux2x82hu!.

The synchronization parameterx(t)50 iff N neurons are
fully synchronous, andx(t) is largest when the states ofN
neurons distribute uniformly in@0, 1#, in which case,x(t)
5N2/8. Figure 1 demonstrates that full synchronization
reached aroundt52680 ~steps!, and x(t) can characterize
the degree of synchronization.

We now consider the case in which the external inputs
aperiodic. We assume thatḡ5g and ē are fixed. The inter-
spike intervalT0 is determined according to the probabili
densityr(t). On the basis of Eq.~7!, we can choose a char
acteristic periodT0* ,t0 . We define the phasef by replacing
T0 with T0* in Eq. ~16!. Roughly speaking, the value off
drifts towardf51 with a constant velocity when extern
spikes are periodic with the periodT0* .

If sup suppr,t0 , we should setT0* 5sup suppr. In this
situation, interspike intervals are equal to or less thanT0* .
Negative phase shifts in the absence of inputs are com
sated by positive phase shifts by external spikes. When
05190
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interspike interval isT0* , both effects are balanced. Th
value off changesDf per external spike regardless off. In
contrast, if the interspike interval is less thanT0* , the effect
of the external spike overrides the negative phase drift. Si
the positive phase shift is larger for biggerf, external spikes
overcompensate the negative phase shift. The biggerf is, the
faster it approaches 1. As a result, the effect of an intersp
interval less thanT0* is similar to the spike effect caused b
the convexity ofg21. Accordingly, all the neurons eventu
ally synchronize except those in the small attractive basin
clustered states.

Generally speaking, interspike intervals take values b
larger and smaller thant0 . External spikes thus drive th
network in both expansive and contractive manners. We
define the phasef for an arbitrarily chosenT0* . In the cor-
responding phase space, the network is driven expansi
when the interspike interval of external spikes is smaller th
T0* . The corresponding phase jumps propel the network
ward full synchronization in the same manner as those s
ied in Ref.@12#. On the other hand, the system is driven in
contractive manner when the interspike interval is larger th
T0* . This situation is explained in the proof of our theore

We note that repetitive inputs of these contractive exter
spikes may also result in stable clustered states that are fo
in more general networks@13,26,32,33#. However, the ex-
panding effect is stronger than the contracting one sinc
clustered state is unstable against feedback spikes from o
clusters. The time course of 30 neurons toward full synch
nization is shown in Fig. 2~a!. We chooser(t) to be an
exponential distributionr(t)5e2lt/l with l50.04~step!21

based on biological evidence of cortical neurons@31#.
We also examine the effect of small white Gaussian no

to each neuron@Fig. 2~b! and Fig. 2~c!#. If s is small enough,
neurons remain synchronous without serious degradation
to noises. In Fig. 2~b!, we find just a slight increase inx(t)
after the full synchronous state is almost realized@t>2000
6-5
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FIG. 2. Behavior of the synchronization parameterx(t) of 30 excitable LIF neurons coupled by spikes.ē50.18, e50.005, and
g50.003 ~step!21. Interspike intervals of external inputs have probability densityr(t)5e20.04t/0.04 ~step!21. White noise intensity is
s50 ~step!21 ~a!, s50.003~step!21 ~b!, ands50.009~step!21 ~c!.
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~steps!#. Though the white noise has a tendency to break
synchrony, each external spike puts the whole network b
to full synchrony. This order creation driven by extern
spikes is important from the viewpoint of temporal spi
coding @31# that cortical information may be coded on th
timing of the spikes, often in the form of synchronous firin
The firings of excitable LIF neurons can synchronize ev
when the states between external spikes are not equal o
to noise or other factors. On the other hand, ifs is not so
small @Fig. 2~c!#, neurons behave randomly where effects
noise overwhelms synchronizing effects of the exter
spikes.

A remarkable point is that neurons can synchronize e
when they do not interact, if the noise is sufficiently wea
This type of synchronization is not possible when the ex
nal inputs are periodic, in which case the value off changes
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at a virtually constant velocity. Such synchronization
caused by external spikes separated by relatively short in
vals, which repulsively disperse the phases ofN neurons.
This synchronization scenario is totally different from th
contracting one stated in the previous theorem although
sence of interactions is common to both cases. Common
ternal inputs are entraining a neural population so that
neurons fire synchronously to code information robustly,
gardless of interactions. Of course, synchronization with
coupling is biologically implausible@1#. Furthermore, pulse
coupling accelerates synchronization even though it is m
ematically unnecessary. The synchronization in biologi
neurons may be based on both effects of the external in
and the mutual interactions. The time course toward synch
nization when feedback couplings are absent (e50) is
shown in Fig. 3 forg50.003 ~step!21, ē50.18, andr(t)
FIG. 3. Behavior of the synchronization parameterx(t) of 30 excitable LIF neurons without coupling.ē50.18, e50, andg50.003
~step!21. Interspike intervals of external inputs have probability densityr(t)5e20.04t/0.04 ~step!21. White noise intensity iss50 ~step!21

~a!, s50.0001~step!21 ~b!, ands50.0003~step!21 ~c!.
6-6
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FIG. 4. Behavior of the synchronization parameterx(t) of 30 pulse coupled excitable LIF neurons with absolute refractorinesē
50.18,g50.003 (step21), ande50.005. Interspike intervals of external inputs have probability densityr(t)5e20.041/0.04 (step21). The
absolutely refractory periodDt of the neuron is set equal to 0~step!21 ~a!, 6 ~step!21 ~b!, and 10~step!21 ~c!.
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being the same exponential distribution as in Fig. 2. We a
investigated noise effects in Fig. 3~b! and Fig. 3~c!. Full
synchronization is achieved even in the absence of p
coupling @Fig. 3~a!#. However, this synchronization is no
stable against noises; Fig. 3~b! and Fig. 3~c! shows that syn-
chronization collapses intermittently. Cooperation of ext
nal spikes and pulse couplings plays an important role
realizing and keeping synchronous behavior.

Our result is consistent with the known results for t
excitable neurons without external spike inputs@36#: full
synchronization in most cases and cluster states in s
cases. In Ref.@36#, the increase in internal states were driv
only by mutual interactions at a sufficiently high rate. Th
derived the condition of sustained firing and synchronizat
for g50 analytically and forg.0 numerically. Although
our model does not include delay, we have treated gen
cases withg.0.

We can also generalize uniform coupling constants
nonuniform ones@12,24,29#. We denote the generalized co
pling strength bye i , j , which has the dependence on a p
esynaptic (j th) neuron and a postsynaptic (i th) neuron. Full
synchronization is guaranteed also whene i , j depends only on
i @12,24#, or only on j @24#. We note that a network with
random positivee i , j can also be led to synchronization~data
not shown! @29#. Excitatory interactions result in the full syn
chronization driven by external spikes, and this phenome
is regardless of precise coupling structures.

Synchronization is more easily reached when absolute
fractoriness is introduced@17#. We assume that a neuron r
ceives neither external nor feedback spike effects forDt after
its latest firing. For simplicity let us conjecture a simple n
work comprising only two neurons. We assume that
states of two neurons come close enough to each othe
that the second neuron fires withinDt after the first neuron
fires. In this case the first neuron does not receive a s
effect from the second one; the first one waits for the sec
one, without a phase jump. The simulation results explor
the effect of absolute refractoriness are shown in Fig. 4.
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absolutely refractory periodDt is set equal to 0~step!21 ~a!,
6 ~step!21 ~b! and 10~step!21 ~c!. Figure 4 shows that syn
chronization is accelerated when the absolute refractorin
is introduced.

In this section we have shown by applying the phase
scriptions that excitable LIF neurons with pulse coupling c
synchronize by the same mechanism as oscillatory LIF n
rons. We have also observed phenomena such as entrain
driven by external spikes and acceleration of synchroniza
by refractoriness. They are based on the pulselike natur
external inputs.

IV. PULSE-COUPLED NAGUMO-SATO NEURONS

The LIF neuron models are continuous in time, but the
are also many discrete-time neuron models. Discrete-t
neuron models can be naturally derived from continuo
neuron models@17,36#. They have been widely used becau
they are easier to analyze and numerically calculate, and
exhibit important properties of biological neurons. The an
lytical calculation benefits from abundant results, for e
ample, of combinatorial mathematics, Turing machines, a
cellular automata. Discrete-time neuron models are also
ful in applications such as associative memories; they a
suit to implementation on electronic devices.

Discrete-time neurons have often been analyzed by u
combinatorial methods@17,36# that are not based on phas
reductions. Considering the results in the last section
seems advisable to combine the discrete-time
continuous-time neuron models. In this section, we un
discrete-time models and continuous-time models using
phase description; we extend the phase description to
discrete-time neuron models.

We use the NS neuron model@40# as an example of
discrete-time neurons. This model is derived on the basi
the Caianiello’s neuronic equation@41#, which is equivalent
to time-discretization of the neuron model used by Caianie
and De Luca@42#. The dynamics of the NS neuron is de
6-7
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scribed by one-dimensional mapping with the internal st
denoted byx(t) (tPN) as follows:

x~ t11!5H x~ t !

b
1a21 @x~ t !>0#,

x~ t !

b
1a @x~ t !,0#,

~21!

whereb.1 and 0,a,1. x(t) is monotonically increasing
in @2`, 0! and@0, `#. If an iteration starts fromx(t),0, then
x increases untilx satisfiesx(t8).0 aftert82t steps.x50 is
understood as the threshold for firing. Consequently, the n
ron fires andx(t8) is reset to a smaller value in the next ste
x(t811) falls in the left branch (x,0) unlessx(t8) is too
large or the neuron receives too much feedback input fr
other neurons~interactions between neurons will be defin
later!. The effect of the external input is reflected in a mon
tonically increasing property of Eq.~21! in @2`, 0!. We can
regard the NS neuron as both an oscillatory neuron and
excitable neuron. It is considered oscillatory if we suppo
we are periodically observing a leaky neuron receiving
suprathreshold bias. On the other hand, it is considered
citable if we suppose that it is a leaky neuron receiving
subthreshold bias, and we are observing it at every insta
receives an external spike.

The minimum possible value ofx(t) is a21 except in
transient states caused by negative large initial conditio
Sincex(t).0 is reset to a negative value in one step ifx(t)
is not too large, we are mainly interested inx(t)P@a
21,0#. In this range, the phasef5g(x) should be monoto-
nously increasing, and as the boundary conditions,
suppose

g~a21!50 and g~0!51.

We allow f.1 corresponding tox.0. The phasef for an
excitable LIF neuron has been defined so that it changes
constant velocity on the average under periodic exte
spikes. Recalling Eq.~18!, we definef5g(x) for the NS
neuron so that it satisfies

g~x!1Df5gS x

b
1aD ~x,0!, ~22!

with a fixed Df. Df denotes the positive phase shift p
iteration, independent off. Since the NS neuron has a dec
similar to that of an excitable LIF neuron, we postulate thag
takes the same form as Eq.~17!. Substitution of Eq.~17! into
Eq. ~22! then yields

A5
ab

b21
, B5S ln

a1b21

ab D 21

,

D51, and Df5 ln bY ln
a1b21

ab
. ~23!

Compatibility conditions ofA.0 and B.0 are satisfied.
Finally, f is represented by
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f5g~x!5 ln
ab

ab2~b21!xY ln
a1b21

ab
11. ~24!

As a result, we can expect phase dynamics similar to tha
an excitable LIF neuron whenx(t),0,

According to Eq.~21!, x certainly falls intox(t)>0 in a
finite time. This encourages us to define 1<f, ln b/ln@(a
1b21)/(ab)#11 ~for 0<x,a! by using Eq.~24! to describe
whole phase dynamics. We should then determine the ph
shift per iterationDf whenf>1. Forf>1, substituting

x5g2~f!5
ab

b21 H 12S ab

a1b21D f21J , ~25!

into

Df5gS x

b
1a21D2f,

we have

Df52 lnH 1

b
1

b21

ab S a1b21

ab D f21J Y ln
a1b21

ab
.

~26!

As is expected,Df,0 for f>1, corresponding to the rese
ting of x immediately after firing.

The single NS neuron approaches an identical stable
riodic solution for any initial conditionsx(0) @40#. In our
phase description, the phase shiftDf is constant when 0
<f,1. The contractive property of Eq.~21! is represented
in the contracting phase shift dynamics whenf>1; differ-
entiating Eq.~26!, we have

21,
dDf

df
,0. ~27!

To capture the way of convergence to a periodic solut
using the phase dynamics, we consider a distribution of
phase whose support is included in@0,lnb/ln@(a1b
21)/(ab)#11#. We start from these initial conditions. Th
phase space can be divided into a finite number of conne
regions according to the number of steps it takes for
neuronal state to satisfyf.1. The phase density in a regio
remains unchanged until the neuron fires. Whenf.1 is re-
alized, the region contracts, and the contracted region
pulled back intofP@0,1). Then the region again drifts to
ward f.1 under iterations. In the course of iterations, t
density restricted to a region contracts every time the neu
fires. The number of points that asymptotically have posit
density is the same as the number of regions. These po
form the periodic solution of Eq.~21!. We note that this
picture is obtained even if we do not persist in phase desc
tion; we can conclude the convergent property based on
factor 1/b in Eq. ~21!. The reason we adopt the phase d
scription is that it enables us to investigate collective beh
ior of coupled NS neurons easily. Spike couplings can
interpreted as phase jumps and we can make use of re
6-8
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FIG. 5. ~a!, ~b! Behavior of 30 NS neurons coupled by spikes with strengthe50.005 whena50.02,b51.15, and the internal periodP
of the single neuron is 20~steps!. ~c! Behavior of the synchronization parameterx(t) corresponding to~a! and ~b!. ~d! Behavior of the
synchronization parameterx(t) whena50.18,b51.15,e50.01, andP54 ~steps!.
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obtained for LIF neurons since the definition of the phase
the NS neuron is closely related to that of phase of a
neuron.

Our next step is to introduce pulse coupling. We den
the state of thei th neuron at timet by xi(t). We assume tha
the i th neuron fires whenxi(t)>0. When it fires, it sends a
spike with the amplitudee at the next time to all the neuron
except itself. The uniform synaptic delay is considered
this framework.xi(t).0 is automatically reset toxi(t11)
,0 at the next step. The couplings are uniform and all to
The phase return mapt~f! for f,1 is calculated using Eqs
~24! and ~25! as

r ~f!5g@g21~f!1e#

5 lnH S a1b21

ab D 12f

2
b21

ab
eJ Y ln

a1b21

ab
11.

Consequently,

dt

df
5H 12

~b21!e

ab S ab

a1b21D 12fJ 21

.1, ~28!

which assures that the behavior of pulse-coupled NS neu
receiving a feedback spike is expansive. In contrast, acc
ing to Eq.~27!, we know that the NS neurons have the te
dency to converge to a periodic solution and form clust
around the periodic points. The actual dynamics are de
mined by the tradeoff between these two effects, which
influential whenf,1 andf>1, respectively.

If random initial conditions are taken, we can expe
xi(t)’s (1< i<N) to be distributed randomly at first. Thei th
neuron receivesN21 feedback spikes during its successi
firings in this stage. For an appropriately largee, the expand-
ing effect is larger than the contracting one. Accordingly,
internal states of neurons travel in a ergodic manner
those of oscillatory LIF neurons. In the course of iteratio
some neurons occasionally fire simultaneously. We ass
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that the i th neuron and thej th neuron fire simultaneously
We note that the absorption is not absolute; generally spe
ing, xi(t) andxj (t) do not take the same value even if the
have fired simultaneously. However, we note that the ph
variables corresponding toxi(t11) andxj (t11) are close
and that the neurons receive interactive spikes att11. Ac-
cordingly, the expanding effect att11 is weaker for thei th
and j th neurons than for the other neurons sin
(d2t)/df2.0. If the contracting effect surpasses the e
panding effect, then thei th and thej th neurons synchronize
asymptotically. The lack of absolute refractoriness is p
tially compensated by the property of the network that
interactions among simultaneously firing neurons are wea
than those among the other neurons in the space of the p
variables. This property of the neural network is also
garded as the relative refractoriness. Even though the
panding effect still overwhelms the contracting effect at t
stage, simultaneous firing of a larger number of neurons
cause contracting behavior. Thus, simultaneously firing n
rons are likely to synchronize asymptotically to form a clu
ter with intracluster synchronization. On the other han
clusters interact by pulse coupling. This interaction is ess
tially the same as that of oscillatory LIF neurons. In mo
cases, all the neurons finally synchronize. We can also
serve avalanche phenomena since stronger interactions o
as cluster sizes become large. The time course ofN
530 NS neurons coupled by spikes with strengthe50.005 is
shown in Fig. 5~a! and Fig. 5~b! for a50.02 andb51.15. No
noise is applied to neurons. Figure 5~c! shows the corre-
sponding synchronization parameterx(t) defined in Eq.
~20!. We can see that synchronization is achieved as a re
of pulse couplings. For these parameter values, the perio
the periodic solution of the single neuron isP520 ~steps!.

Figure 5~d! showsx(t) when a50.18, b51.15, ande
50.01. In this case, full synchronization does not appear
the asymptotic collective behavior is a two-cluster state. T
state of each NS neuron converges to the same periodic
6-9
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FIG. 6. Behavior of the synchronization parameterx(t) for 30 NS neurons coupled by spikes with strengthe50.005 whena50.07,
b51.15, and the internal periodP of the single neuron is 8~steps!. Uniformly distributed independent noises with the dynamic ranges are
applied to all the neurons.~a! s50 ~step!21, ~b! s50.012~step!21, ~c! s50.018~step!21, and~d! s50.028~step!21.
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lution with P54 ~steps!. Accordingly, the two clusters con
verge to the same periodic solution, but their phases are
ferent. Each periodic point has the large attractive basin
the size;1/P in this case. Feedback spikes are not stro
enough to propel neurons out of the basins. Nevertheless
observe noise-induced full synchronization of coupled
neurons. The noise enables a neuron to escape from a
tractive basin of a clustered state. If the noise is stro
enough to make the neurons get out of clusters but no
strong as to destroy intracluster synchronization, then
synchronization can be induced by noise. We performe
simulation in which we added uniformly distributed indepe
dent noises with the dynamic ranges to 30 neurons. The
results whena50.07, b51.15, e50.005, andP58 ~steps!
are shown in Fig. 6. As Fig. 6~a! shows, without noise, the
population falls into a clustered state with two clusters. T
is because attractive basins of periodic points are relativ
large compared toe. The collective behavior can not esca
out of the clustered state without noise. Figure 6~b! and Fig.
6~c!, however, show that neurons synchronize when no
are applied. Whens50.012 (step21) @Fig. 6~b!#, each neu-
ron first falls into one of five clusters att>50 ~steps!. The
number of clusters decreases to three att>350 ~steps!, and
to two att>800 ~steps!. Finally, the network state converge
into one group att>1100 ~steps!. Whens50.018 (step21)
@Fig. 6~c!#, full synchrony is realized in an earlier stage. T
final state is the fully synchronous state deteriorated by c
tinuously added noises. In these two cases, mode
strengths of white noises help the network state to go ou
the clustered state. The state falls in the full synchron
state with a high probability since it is the most stable so
tion with the largest basin. Synchronization does not occ
on the other hand, when the noise amplitude is too large@s
50.028 (step21) in Fig. 6~d!#.

The noise-induced synchronization resembles cohere
resonance~CR! @43–45# in the meaning that both are ordere
states realized with the help of noise. For CR in continuo
time models, noise evokes coherent firing in neurons w
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biases are set at slightly subthreshold values. For insta
CR is observed in coupled FitzHugh-Nagumo neurons@44#
and coupled Hodgkin-Huxley neurons@45#. Moreover,
noise-induced synchronization in the NS neurons is a
similar to simulated annealing. In simulated annealing, a g
bal optimization problem is solved by noises whose streng
gradually decrease so that the internal state can get ou
local optima. Clustered states are less stable than the
synchronous state since clusters have smaller attractive
sins than the fully synchronous state does. Noises are e
tive in driving the network out of quasioptimal clustere
states.

V. DISCUSSIONS

A. Possible extensions

We have shown that networks of excitable LIF neuro
without the delay and the NS neurons with the uniform de
become fully synchronized in most cases. We have propo
a phase-based framework for studying the pulse-coupled
citable neurons.

Though we have concentrated on the analysis of sync
nized behavior in this paper, stable clustered solutio
@17,22,26,27,32,33# and asynchronous states@18,20,34# have
also been found in more general networks. This multista
ity is related to the superposition problem@17#. Investiga-
tions of more general cases are our future problem.

We must also pay attention to the role of external inpu
No matter whether suprathreshold or subthreshold, inp
have been supposed to be common to all the neuron
many studies, including ours. This simple supposition h
enabled us to conclude that neurons synchronize even w
out interactions, entrained by external spikes. Though
synchronization without coupling is unrealistic@1#, it is pos-
sible for those neurons that receive the same external in
and mutual interactions through coupling to synchronize
form an assembly. The external inputs representing inform
tion signals can be nonuniform@46#. Synchronization in an
6-10
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actual assembly may occur as a result of the combined
fects of feedback interactions and entrainment by exte
inputs.

B. Contracting or expanding?

We comment on the possibility of realistic routes to sy
chronization. In a network of LIF neurons the aggrega
phase variableF travels ergodically and chaotically until
reaches an attractive basin of absorption. Local stability
synchrony is based on absorption. The synchroniza
mechanism of nonleaky linear neurons is also based on
godicity @25#. In a network of the FitzHugh-Nagumo neu
rons, on the other hand, the collected phase variable is
tracting and there is no absolute absorption@33#. Synchrony
would be achieved only in the limit of infinite time. Th
local volume around the stable point contracts on receiv
external spikes.

Though ergodicity-based scenarios are mathematic
perfect, their application to the synchronization of actual n
work of neurons is questionable because the assumptio
absolute absorption is biologically implausible. If absorpti
is not absolute, small fluctuations caused by noises m
grow because of the expanding dynamics. Furthermore,
proof of the synchronization is combinatorial and tells
nothing about the synchronization time. Synchronizat
may require a longer time than is biologically feasible. Th
situation is common to primitive chaos control techniques
which the controller must wait for a long time before th
state falls near the desired fixed point@47#. Our analysis of
excitable LIF neurons and the NS neurons is also subjec
ergodicity-based evidence although more general route
synchronization are suggested by analyzing the case of
tributed interspike intervals of external inputs. Biologic
situations are between two extremes represented by the
panding and contracting dynamics.

C. Oscillatoriness and excitability

In oscillatory systems, the phase variable changes
constant speed proportional to the internal frequency. In
citable systems, in contrast, the phase drifts in the nega
direction when there are no external inputs. An exter
spike makes the phase jump towards the positive direct
compensating the negative phase drift. The phase has
defined so that both effects are almost balanced; the p
has a constant positive velocity on the average when
external spike arrives periodically with a prescribed peri
In this way, excitable systems have been related to osc
tory systems. With the use of the results for oscillatory L
neurons, we have proven that neurons synchronize when
interspike intervals of external input are less than a p
scribed period. Full synchrony can be also realized in m
cases with more general types of interspike intervals
which interspike intervals are more widely distributed.

Firing can be driven by suprathreshold biases. These
ases may come into play, for example, when sensory neu
strongly respond to large external stimuli and when a liv
thing is carrying some mental or physical activities. On t
other hand, a neuron is not an intrinsic self-sustained os
05190
f-
al

-
d

f
n
r-

n-

g

ly
t-
of

ht
he

n

n

to
to
is-
l
x-

a
x-
ve
l

n,
en
se
e
.
a-

he
-

st
n

i-
ns

e
il-

lator in most cases where firings are promoted by spike
puts from neurons outside a fixed assembly as well as
feedback spikes inside the assembly. The technique de
oped in this paper is also useful for analyzing dynamics
neuronal assemblies within a huge population, since we
look upon the neurons outside the assembly as an exte
source of spikes.

Another model to be noted is the nonleaky integrate-a
fire neuron that corresponds to the LIF neuron withg5ḡ
50. An arbitrarily small positive bias makes this kind o
neuron a linear oscillatory integrator@25#. In the excitable
case with a subthreshold bias, the statex does not change
unless external spikes arrive. Networks of these excita
nonleaky neurons that spontaneously fire only by mutual
changes of spikes were analyzed in Ref.@36#, which showed
that full synchronization occurs in most cases and clus
appear for some initial conditions. The phase variable
this neuron is discretized after transient activity; a neu
takesm5 dh/ ē e states 0,1/(m21),2/(m21),...,(m22)/(m
21), and 1 whereh is the threshold anddxe denotes the
roundup ofx. We can easily show that the neurons synch
nize if e.h/N and ē is comparatively larger thane. Though
we do not further examine this model here, we are interes
in it since it is related to coincidence detector mod
@31,48#. A coincidence detector neuron fires if it receiv
more spikes than the threshold within a short time windo
The coincidence detectors are usually at their resting po
tials waiting for simultaneous input spikes. Each discr
phase value would correspond to the number of recei
spikes within the time window. However, the phase is at
resting states in most cases, and the phase description i
effective to express the dynamical behavior of coinciden
detectors. Considerations of delay and of more general c
plings are required for understanding the computational r
of coincidence detectors@31,35,46#.

APPENDIX: PROOF OF THE THEOREM

To prove the theorem, we assume sup suppr(t).t0 , and
then we can taket1.t0 such thatr(t1).0. Accordingly, the
interspike interval of external spikes is equal tot1 with a
positive probability. Then, without loss of generality, we c
consider a situation in which external spikes arrive at
5kt1 , (k51,2, . . . ).Using Eq.~6!,

xi@~k11!t1#5@xi~kt1!1 ē #e2ḡt1, ~A1!

where xi(kt1) and xi@(k11)t1# are the internal states jus
before each external spike is received. Using Eq.~A1! with
k50,1, . . . ,k21, we have

xi~kt1!5xi~0!e2ḡkt11 ēe2ḡt1
12e2ḡkt1

12e2ḡt1
.

Accordingly, for everyd.0, we can takek1 such that

uxi~k1t1!2 x̄u,d,

where
6-11
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x̄5
ēe2ḡt1

12e2ḡt1
.

We assume that spikes arrive at an intervalt2,t0 after k1
external spikes have come. Then everyxi(t) is pushed up
faster than it decays, and eventually thei th neuron fires. We
consider a neuron that att5k1t1 has statex(k1t1)5 x̄ and
assume that this neuron would fire after receivingk2 more
periodic external spikes of the periodt2 . The state of the
imaginary neuron just before receiving thek2th spike satis-
fies

x~k1t11k2t2!.h2 ē.

N neurons fire synchronously att5k1t11k2t2 if we choose
e

-

ty

of

.
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d5x~k1t11k2t2!2~h2 ē !,

since for everyi it follows that

xi~k1t11k2t2!.x~k1t11k2t2!2d.h2 ē.

OnceN neurons fire synchronously, they are synchronous
the future becausexi(t) takes the same value for alli. This
completes the proof.

ACKNOWLEDGMENTS

We thank I. Tokuda for helpful discussions and sugg
tions on this work. This work is supported by the Jap
Society for the Promotion of Science and CREST, JST.
m-

-

.

os

ew

a-
@1# R. Eckhornet al., Biol. Cybern.60, 121 ~1988!.
@2# C. M. Gray, P. Ko¨nig, A. K. Engel, and W. Singer, Natur

~London! 338, 334 ~1989!.
@3# E. Vaadiaet al., Nature~London! 373, 515 ~1995!.
@4# E. Rodriguezet al., Nature~London! 397, 430 ~1999!.
@5# S. H. Strogatz and I. Stewart, Sci. Am.269 ~6!, 68 ~1993!.
@6# Y. Kuramoto, Prog. Theor. Phys. Suppl.79, 223 ~1984!;

Chemical Oscillations, Waves, and Turbulence~Springer-
Verlag, Berlin, 1984!.

@7# Models of Neural Networks II, edited by E. Domany, J. L. van
Hemmen, and K. Sculten~Springer-Verlag, New York, 1994!.

@8# F. C. Hoppensteadt and E. M. Izhikevich,Weakly Connected
Neural Networks~Springer-Verlag, New York, 1997!.

@9# J. Keener and J. Sneyd,Mathematical Biology~Springer-
Verlag, New York, 1998!.

@10# G. Tamás, E. H. Buhl, A. Lörincz, and P. Somogyi, Nat. Neu
rosci.3, 366 ~2000!.

@11# C. S. Peskin,Mathematical Aspects of Heart Physiology~Cou-
rant Institute of Mathematical Sciences, New York Universi
New York, 1975!, pp. 268–278.

@12# R. E. Mirollo and S. H. Strogatz, SIAM~Soc. Ind. Appl.
Math.! J. Appl. Math.50, 1645~1990!.

@13# Y. Kuramoto, Physica D50, 15 ~1991!.
@14# A. T. Winfree, J. Theor. Biol.16, 15 ~1967!; The Geometry of

Biological Time~Springer-Verlag, New York, 1980!; L. Glass
and M. C. Mackey,From Clocks to Chaos—the Rhythms
Life ~Princeton University Press, Princeton, 1988!.

@15# P. C. Bressloff, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.
60, 820 ~2000!.

@16# P. C. Bressloff, J. Math. Biol.40, 169 ~2000!.
@17# M. Usher, H. G. Schuster, and E. Niebur, Neural Comput5,

570 ~1993!.
@18# L. Abbott and C. van Vreeswijk, Phys. Rev. E48, 1483

~1993!.
@19# P. C. Bressloff and S. Coombes, Physica D130, 232 ~1999!.
@20# P. C. Bressloff and S. Coombes, Neural Comput.12, 91

~2000!.
@21# B. Ermentrout, J. Comput. Neurosci.5, 191 ~1998!.
@22# C. van Vreeswijk, Phys. Rev. E54, 5522~1996!.
@23# S. Bottani, Phys. Rev. Lett.74, 4189~1995!.
,

@24# S. Bottani, Phys. Rev. E54, 2334~1996!.
@25# W. Senn and R. Urbanczik, SIAM~Soc. Ind. Appl. Math.! J.

Appl. Math. 61, 1143~2000!.
@26# U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. Lett.74, 1570

~1995!; Phys. Rev. E57, 2150~1998!.
@27# D. Golomb and J. Rinzel, Physica D72, 259 ~1994!.
@28# A. Nischwitz and H. Glu¨nder, Biol. Cybern.73, 389 ~1995!.
@29# X. Guardiola, A. Diaz-Guilera, M. Llas, and C. J. Pe´rez, Phys.

Rev. E62, 5565~2000!.
@30# L. Neltner, D. Hansel, G. Mato, and C. Meunier, Neural Co

put. 12, 1607~2000!.
@31# H. Fujii, H. Ito, K. Aihara, N. Ichinose, and M. Tsukada, Neu

ral Networks9, 1303~1996!.
@32# D. Hansel, G. Mato, and C. Meunier, Europhys. Lett.23, 367

~1993!.
@33# D. Hansel, G. Mato, and C. Meunier, Neural Comput.7, 307

~1995!.
@34# C. van Vreeswijk, Phys. Rev. Lett.84, 5110~2000!.
@35# K. T. Judd and K. Aihara, Neural Networks6, 203 ~1993!;

ibid. 7, 1491~1994!; Int. J. Bifurcation Chaos Appl. Sci. Eng
10, 2415 ~2000!; H. Suzuki et al., Biol. Cybern. 82, 305
~2000!.

@36# C. van Vreeswijk and L. F. Abbott, SIAM~Soc. Ind. Appl.
Math.! J. Appl. Math.53, 253 ~1993!.

@37# N. Ichinose, K. Aihara, and K. Judd, Int. J. Bifurcation Cha
Appl. Sci. Eng.8, 2375~1998!.

@38# L. Lapicque, J. Physiol. Pathol. Gen.9, 620 ~1907!.
@39# H. C. Tuckwell, Introduction to Theoretical Neurobiology

~The Press Syndicate of the University of Cambridge, N
York, 1988!, Vol. 1, pp. 85–123.

@40# J. Nagumo and S. Sato, Kybernetik10, 155~1972!; K. Aihara,
T. Takabe, and M. Toyoda, Phys. Lett. A144, 333 ~1990!.

@41# E. R. Caianiello, J. Theor. Biol.1, 204 ~1961!.
@42# E. R. Caianiello and A. De Luca, Kybernetik3, 33 ~1966!.
@43# H. Ganget al., Phys. Rev. Lett.71, 807~1993!; A. S. Pikovsky

and J. Kurths,ibid. 78, 775 ~1997!; A. Longtin, Phys. Rev. E
55, 868~1997!; B. Lindner and L. Schimansky-Geier,ibid. 60,
7270 ~1999!.

@44# C. Kurrer and K. Schulten, Phys. Rev. E51, 6213 ~1995!; I.
Tokuda and K. Aihara, in Proceedings of the Fifth Intern
6-12



SYNCHRONIZATION OF PULSE-COUPLED EXCITABLE . . . PHYSICAL REVIEW E 64 051906
tional Symposium on Artificial Life and Robotics~AROB
5th’00!, p. 177; B. Hu and C. Zhou, Phys. Rev. E61, R1001
~2000!.

@45# Y. Wang, D. T. W. Chik, and Z. D. Wang, Phys. Rev. E61,
740 ~2000!.
05190
@46# M. Watanabe, K. Aihara, and S. Kondo, Biol. Cybern.78, 87
~1998!.

@47# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@48# M. Abeles, Isr J. Med. Sci.18, 83 ~1982!.
6-13


