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Synchronization of pulse-coupled excitable neurons
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Collective behavior of pulse-coupled oscillatory neurons has been investigated widely. In many cases,
however, real neurons are intrinsically not oscillatory but excitable. The networks of excitable neurons can
have their own characteristic dynamics, and they are of interest also from the viewpoint of functional assem-
blies. In the present paper, the collective behavior of pulse-coupled excitable neurons has been investigated
using phase description. It is shown that full synchronization is achieved in networks of excitable leaky
integrate-and-fire neurons and discrete-time Nagumo—Sato neurons. The cooperative roles of external spike
inputs, decay of internal states, and feedback spikes are explained. Enhancement of synchronization by refrac-
toriness and noise is also reported.
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[. INTRODUCTION els are too simple to represent the behavior of biological
neurons, these approaches were the important starting points
Investigations in various fields have observed the syneof studying pulse-coupled neural networks. Then these re-
chrony of coupled elements such as synchronous firing ofults have been extended to various neuron models: neurons
neurong 1-4] and the synchronous flashing of tropical fire- with a constant positive delgyl5—17, or a delay given by
flies [5]. Particularly, synchronous firing of cortical neurons a-function [15,16,18—-22, linear neurong23—-25, neurons
has been widely studied both by physiological experimentdinked by inhibitory coupling[15,20,22,26—2B neurons
and by model analysis. Eckhoet al.[1] and Grayet al.[2]  linked by nonuniform coupling15,19,21,25,2p heteroge-
investigated the synchronous firing of neurons in cat primaryneous neurongl8,23—25,3Q) and neurons linked by gener-
visual cortex, and found that neurons that have the samalized coupling with delay31]. The spike response model
preferred stimulus are likely to synchronize. It is pointed out[7] has also been studied to investigate the collective behav-
that synchronization can serve as a mechanism for represendr of neural networks. The dynamical behavior of a neural
ing coherent features such as objects and motions. The synetwork depends very much on these factors as well as on
chronized neurons driven by a common preferred stimulugxternal inputs and the initial conditions. Clustered states
form a dynamical functional assembly. Vaadshal. [3] [17,22,27,32,3B stable asynchronous behavi8,20,34,
showed that the correlations between firing neurons in théursting [20], and traveling wave$16,19-2] have also
frontal cortex are modulated by behavioral tasks, and Rodbeen found in other situations.
riguezet al.[4] suggested that synchronized gamma oscilla- In some works, a single neuron was assumed to be an
tions (30—80 Hz in neuronal discharge play an important inherent oscillator even without feedback spikes from other
role in human perception, contributing to feature binding.neurons[12,13,16—27,29,30,34 The inherent oscillations
The neurons that belong to a certain assembly can desyiare induced by external bias. Biological neurons are, how-
chronize to join different assemblies when another stimulugver, more naturally quiescent with the resting potential and
comes. Synchronization is also important with regard to theexcitable for suprathreshold stimuli rather than spontane-
information coding; the coding of information with synchro- ously oscillatory.
nous firing can be robust against noises and disorder in a The dynamics of some networks of excitable neurons is
small number of neurons. Many theoretical and numericatonsidered to resemble that of oscillatory ones driven by
investigations of synchronization have been motivated byexternal biases and feedback inpl2§], based on approxi-
these biological evidences for synchronization, and also bynation of the spike inputs to excitable neurons by the corre-
various physical and chemical oscillation phenomena. sponding continuous inputs to oscillatory neurons. Neverthe-
The investigations of the synchronization began with theess, it is worth studying pulse-driven neurons in particular.
analysis of oscillators coupled by gap junctions or mean fieldNetworks of excitable neurons can be regarded as a model of
[6—10]. Pulse-coupled neural networks, however, have ata certain functional assembly of cortical neurons that are
tracted more attention these days since neurons usually intereceiving feedback spikes from other neurons. Consequently,
act by sending and receiving spikes. PedKih] derived the the properties of the inputs can be different from those of the
synchronization condition for two pulse-coupled model neu-continuous counterparts that are often identified with exter-
rons. Mirollo and Strogatgl12], and Kuramotd13] applied  nal stimuli. Furthermore, excitable systems can have peculiar
phase reduction techniqui#4], to extend the results in Ref. dynamics different from oscillatory systems. It is also pos-
[11]. They showed that, for almost all initial conditions, full sible that modulated interspike intervals of spike timings rep-
synchronization is achieved in pulse-coupled networks ofesent the signal information in spatiotemporal spike coding
leaky integrate-and-firéLIF) neurons. Although their mod- schemes to be engaged in information processing in neural
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systemg31,35. Excitable systems are also related to asyn-¢<[0,1]. ¢ corresponds tx in a one-to-one manner, and
chronous computation in which the elements exchange intefe transformation is given by

active spikes asynchronously to carry out information pro-
cessing.

In the work reported in this paper, we study networks of
excitable but not intrinsically oscillatory neurons. The excit-
able neurons that fire with the help of external spikes in
addition to feedback interactions are considered. These neu- _ A1 _ _
rons are different from those in Ref20,36 whose firing is z/:éareC—(l e 7). Itfollows thatg(0)=0, g(1)=1,
mainly based on feedback interactions.

We investigate the collective dynamics of these networks
by using phase reduction methd@14,32,33,3}, and unify d¢ 1
the descriptions of oscillatory and excitable systems. We dt T )
deal here with two neuronal models. In Sec. Il we show that

coupled excitable LIF neurongl7,36,38,39 synchronize . i
based on the similar mechanism to that of oscillatory ones! "€ Phase of a neuron receiving a spike from another neuron

The effects of noise and refractoriness are also examinedMPS from ¢ to 7(¢), and the phase return mai¢) is
We then investigate networks of Nagumo—S@is) neu- expressed as

rons[40] in Sec. IV. The NS neuron are discrete in time and

can be regarded as both oscillatory and excitable. Our pur- 1

pose in considering this model is to present a method to 7(#)=0[g *(¢)+e]=¢— —In{l—ee”’(1—e ")}
unify discrete-time systems and continuous-time systems 4 (4
with the help of phase description. We show a mechanism

that leads to full synchronization in coupled NS models. ) ) )

Noise-induced synchronization is also observed. We outline the typical behavior dff neurons along12].
First, the convexity ofg~'(¢) (g~ '>0 andg '"<0) is
essential, and it leads to

¢=9(x)=y *In )

C—x’

Il. PULSE-COUPLED OSCILLATORY LEAKY

INTEGRATE-AND-FIRE NEURONS q 1
,
Mirollo and Strogatz[12], and Kuramoto[13] showed —=—-">1 )

that pulse-coupled identical oscillatory LIF neurons eventu- 1— fewb
ally synchronize under almost any initial condition. Al- c
though we are interested in excitable systems in this paper,

we briefly review their results because we will be definingwe denote the phase variable of tie neuron by, . The

the phase variable of an excitable LIF neuron in comparison&ggregated dynamics is equivalent to the dynamicsbof
with that of an oscillatory LIF neuron. The dynamics of an =(¢1,¢5,...,6n) On aN-dimensional torus® has neutral

oscillatory LIF neuron can be represented by stability almost everywhere because of Eg). ® evolves
with local instability when a stimulating spike is emitted
dx from a neuronN—1¢;’s correspond to the recipients of the

EZIO_ vX, @) spike, and they have local expansiveness owing to(&).

Consequently, the trajectory df is essentially repulsiveb

wherex is the internal state corresponding to the membrand@vels ergodically on the torus until it comes into an attrac-
potential, y is the leak rate, antl, is the external bias with tive basin of absorptioi12], where multiple;'s are coa-
I,>v. The external input is implicitly assumed to be con- Ie_sced _|nto an_ldenucal valug. After absorption, the virtual
tinuous. Wherx exceeds the given threshold, the neuron firelimension of® is decreased since once the two phase values
andx is reset to the resting potential. Without losing gener-2€come equal, they remain equal forewemeurons finally
ality, the threshold and the resting potential can be set equ&Ynchronize by repeating this procedure.

to 1 and 0, respectively. The periacf the firing is given by Since synchronous firing with more neurons drives the
system to synchrony more strongly. As a result, full synchro-

1 | nization is achieved in an accelerated manner. This phenom
T="In—2 enon is called avalanche.

Yy lo—v We note that, owing to Eq5), two trajectories starting

from two close points on thdl-dimensional torus may take
Mirollo and StrogatZ12] examined a network of pulse- quite different courses to synchronization. Full synchroniza-
coupledN neurons in which a firing neuron sends a spike oftion is ensured by orbital ergodicity combined with absolute
amplitudee to all the other neurons. They assumed instantaabsorption. This is in contrast with ubiquitous synchroniza-
neous interactions, common external inpgito all the neu- tion scenarios in which local stability assures synchroniza-
rons, and uniform all-to-all couplings. To clarify the dynam- tion. The synchronization conditions have been widely dis-

ics of individual neurons, they introduced the phase variableussed and extended to various neural netw(sks Sec.)|
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ll. PULSE-COUPLED EXCITABLE LEAKY cause we could not expect the contribution of feedback
INTEGRATE-AND-FIRE NEURONS spikes if external spikes arrived at a significantly lower rate

. . . . . to make every neuron quiescent. The sufficient condition for
As mentioned in Sec. |, the collective behavior of oscil- sustained firing is

latory LIF neurons has been widely investigated. On the
other hand, LIF neurons with excitable dynamics, which re-
ceive pulselike external inputs, seem more plausible in the
cortex. In contrast to the neuron model whose dynamics i
represented by Eq1), the model of such a neuron must be
intrinsically nonoscillatory. The state of such a LIF neuron
decays exponentially with time to the resting level when no
spike input(either external or feedbagks received or when
subthreshold inputs are received. When occasional inciden . - )
spikes arrive at a suprathreshold rate, each spike pushes UI Eq. (7) is not satisfied, them(t) finally decays to zero

the state value successively to the threshold, and makes i Ies_s_eN Is large enough._Un_der .th's. condition, a suff|c_|ent
neuron fire. We call this kind of neuron excitable. ExcitableCondltlon for full synchronization is given by the following

. . theorem. The proof of this theorem is given in the Appendix.
LIF neurons can often model biological neurons more plau Theorem If Eq. (7) is satisfied and sup supgt)>to,

sibly than oscillatory ones. For example, neurons in a func_henN excitable LIF neurons synchronously fire with a finite
tional assembly receive spikes from neurons outside the as- y y

sembly as well as feedback spikes from constituent neuror&((:fl}:);b;I|tyiseFL(1:réhe:_r:or;ncs)?]/nc:éorr]cl)znastlon can occur even
within the assembly. In the network models of excitable LipWithout pu upling g neu X

neurons, those spikes from outside the assembly can be con- We_ should say_that this route to_fuII synchronization s
sidered to be coming from a source of external spikes. W |olog|9ally exceptionalk; external ;plkes with long enough
show that neurons in a network synchronize in most case'é‘terSp'ke '”tefYa'S. contract t'he distances among the neu-
when external spikes are periodic, in a manner similar to th onal statesq(t_) S W'thOUt making the neurons fire, and t.hen.
oscillatory case. We also extend the proof to the case of2 external spikes W'th a suprathreshold rate must arrive in
rder to let them fire simultaneously. This synchronization

aperiodic external spikes to elucidate the possibilities of . o .
other scenarios of collective behavior scheme is also unrealistic because the fissteps of syn-

We use the following excitable LIF neuron model chronizing process can be easily disturbed by external spikes
[17,36,38,33 In this model, an external input is a spike with with smaller interspike intervals. Moreover, synchronization

an amplitudee rather than a constant or smoothly varying without _mutual !nteract|on§ IS blologlc.all'y implausiblé].
\(Ve are instead interested in more realistic routes to synchro-

bias. The response of the excitable LIF neuron to external ™~ ¢ : X .
spikes is represented as follows: nization driven by pulse interactions. To dev_elop the analy-
sis, we extend the phase reduction of oscillatory systems
B ety [8,12-14,32,3Bto excitable systems. As is shown later,
X()=[x(t) +ele”” ¥, (test<tiiq), (6)  phase description is useful for treating the effects of decay
and of the jump of the state in a unified manner. It is also
wherex(t) e[0,h] is the internal state at timg h>0 is the  useful in deriving synchronization conditions for pulse-
threshold,y>0 is the decay rate, artq is the instant when coupled excitable neurons that correspond to those for oscil-
the neuron received tHeth external spike. When the neuron latory LIF neurong12,13.
receives a spike dt the state jumps instantaneously from  We first treat the case in which external spikes are peri-
X(t) to x(t) +'e. Whenx(t) + € reaches the fixed threshdil  odic with periodTy; p(t)= 6(t—Tp). An excitable LIF neu-
the neuron fires and the state is reset to 0. ron [Eq. (6)] approaches an oscillatory LIF neurpig. (1)]
We assume here thhtexcitable LIF neurons are coupled in the limit ase—0 andT,— 0 with'e and T, satisfying the
by spikes and each neuron receives feedback spikes frogonditions below. To benefit from the theoretical results in
other neurons. We also assume that this interaction is instaiRef.[12], we define the phasg [ 0,1] for an excitable LIF
taneous, and we denote the amplitude of a stimulating spikeeuron so that these phases are consistent with those for an
by e. All the neurons receive the same external spikes andscillatory LIF neuron defined by E@2) in this limit.
the neuronal connections are all-to-all and uniform. The state Accordingly, we explore the relations amonglg, v, €,
of theith neuron (Ei<N) at timet is denoted byk;(t). andT, in the limit ase—0 andT,— 0. We note thak and
We investigate what kind of collective behavior appearsT, are not independent when the other variables are fixed.
in response to the external inputs with the probability densityWe denote by* the asymptotic value of when the thresh-
p(t) of interspike intervalsp(t) satisfies[yp(t)=1, and old h were absent. For an oscillatory LIF neuron, Ei)
p(t)=0, (t<0). First of all, there is a necessary condition yields
that an excitable LIF neuron fires spontaneously, receiving
external spikes; external spikes must come at a higher rate xX*=lgly. 9
than a critical value 1§ with a finite probability. The neu-
rons might keep firing due to feedback spikes even if theé=or an excitable LIF neuron, we can determifefrom
external firing rate is slightly less thantd/ However, 1f; is B
a good lower bound unleseN is large enough. This is be- (x*+€e)e "o=x*, (10

infsuppp(t)<tg, !

Where supp denotes the support of a function, gnid de-
fined so that it satisfies

he Yo+e=h. (8)
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Given Egs.(9) and(10), we know that a necessary condition
for consistent phase description of excitable LIF neurons is

| 0 €

mi iy (11)

X*

Another condition is on the increasing ratexah the limit as
‘€e—0 andT,—0. Using Eq.(1), we have

(x+€)e "o % dx

lim =—=lg— yX. (12
Ty To dt °
The substitution of Eq(1l) into Eq. (12) yields
€y
. (X+a(1_?y+lo)_x 7
[o— yx=Iim = =—(lg—yX).
0 =lIn| 1+ <y 4
Y lo

Consequently, we have= y, and we identifyy andy in the

following. To guarantee the constant positive phase velocit

which oscillatory LIF neurons hajdq. (3)], ¢=g(x) must
satisfy

g(x)+Ap=g[ (x+eje 7T0], (13)

whereAd is the infinitesimal phase shift fdr, independent
of ¢. Substitution of Eq(11) into Eq. (13) yields

dg( ¥x| Ao

x|\ T (14

in the limit asT;—0 (e—0 and A ¢—0). Integrating Eq.
(14), we have

Adlo

g(X) = ?y

In(lo— yX) +const.

Applying the boundary conditions

g(0)=0 and g(h)=1, (15

we obtain

€ €
900 =Ine— (g7 1)x/ ne—@o—pn 19

which is essentially the same as Ef).

We next proceed to the nonlimiting case in whieland
T, are finite. Motivated by Eq(16), we postulate thag(x)
be written in the form

A
g(x)=Blnm+D (0=x=<h), a7
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A
Blnm+D+A¢=Bln D. (18)

—_—+t
(x+elg
|0+?’y

Consequently,
and

wherex* is defined in Eq(11). By the boundary conditions
specified in Eq(15), we have

€ -1
D=0, Bz(lnm) .

As a result,g(x) of an excitable LIF neuron has the same

%xpression as that of an oscillatory LIF neuron represented in

Eqg. (16). Accordingly we can benefit from the results ob-
tained for the networks of oscillatory neuropk2,13]; we
expect thalN neurons synchronize in finite time based on the
convexity ofg~ 1. The difference between pulse-coupled os-
cillatory and excitable LIF neurons is in their detailed phase
dynamics;¢ of an excitable LIF neuron drifts to the negative
direction with the following velocity,

-1

) <0,

dp  (e7T0—1)yx
(19

€
dt T e (e’o—1)x ( N &= Dh

when input spikes are absent areix*. An input spike
makes¢ jump to the positive direction. As a result, the phase
¢ is changing with a constant positive velocity on the aver-
age. According to Eq(19), the negative phase shift during
two external spikes is larger for bigger since ¢ is a mo-
notonously increasing function of On the other hand, the
effect of an external spike on the phase shift is qualitatively
similar to that of a feedback spike. Considering &), we

can see that the positive phase shift caused by an external
spike is larger for biggerp. As a result, the positive phase
shifts caused by external spikes compensate the negative
phase shifts between the external spikes. As a whole, we
encounter the dynamics @f with a constant phase velocity
when we observe the population of excitable neurons at
=kTy, (k=1,2,...).

The effect of discreteness in input time is nontrivial, but
not grave. Ifx;(t)=h whenever thath neuron is about to
fire as a result of receiving an external or feedback spike, the
convexity ofg holds in the strict sense. In this case, the result
in Ref. [12] is applicable and full synchronization always
occurs. In general, howevex,(t) exceedsh when the neu-

whereA>h, B>0, andD are parameters to be determined.ron is going to fire. We assume thg(t) exceeds by Ah
Also in this case, we require a constant phase velocity whewhen theith neuron fires. Then a small fluctuationxt) is
X is observed at the periodic times of external spikes. Wenegligible because it is absorbed by mardin when firing.
substitute Eq(17) into Eq. (13) to obtain As a result, attractive basins of clustered states, which have
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FIG. 1. (a), (b), (c) Behavior of 30 excitable LIF neurons coupled by spikes. In the following, we denote by step the time unit for
integrating Eq(6). External inputs are periodic with peridd= 18 (step$ and intensitye=0.1. The coupling strength is=0.007, and the
decay rate isy=0.003(step *. (d) Behavior of the synchronization paramejgt) of the same time series.

measure zero for oscillatory systems, have positive meanterspike interval isTy , both effects are balanced. The
sures. Whether a clustered state is realized depends on initighlue of ¢ changes\¢ per external spike regardless ¢f In
conditions. Owing to the assumption of absolute absorptiongontrast, if the interspike interval is less tha@f, the effect

the final state of coupled neurons is fully synchronized oryf the external spike overrides the negative phase drift. Since
clustered. Nev_erthe_less, the basins of clustered states occugys positive phase shift is larger for biggérexternal spikes
only small regions in the phase space; for most initial Con'overcompensate the negative phase shift. The biggerthe

d|t|on§, N.neurons fuIIy_ synchronize in f|n|te.t|me. The syn- faster it approaches 1. As a result, the effect of an interspike
chronization of 30 excitable LIF neurons with common pe-. P :
interval less thag is similar to the spike effect caused by

riodic external spikes is shown in Fig(d), Fig. 1(b), and . 0 .
b g(@, Fig. 1Ubj the convexity ofg~1. Accordingly, all the neurons eventu-

Fig. 1(c). Figure 1d) shows the evolution of the synchroni- . ; . )
zation order parametey(t) defined by ally synchronize except those in the small attractive basins of
clustered states.

N Generally speaking, interspike intervals take values both
X(t)=z _ dix;(t),x;(t)], (200 Jlarger and smaller that,. External spikes thus drive the
T network in both expansive and contractive manners. We can
where define the phase for an arbitrarily chose§ . In the cor-
responding phase space, the network is driven expansively
d(x,x")=min(|x—x"[,|x=x"+h[,[x=x"=hl). when the interspike interval of external spikes is smaller than
T4 . The corresponding phase jumps propel the network to-
ward full synchronization in the same manner as those stud-
ied in Ref.[12]. On the other hand, the system is driven in a
contractive manner when the interspike interval is larger than
T4 . This situation is explained in the proof of our theorem.
We note that repetitive inputs of these contractive external
spikes may also result in stable clustered states that are found
f more general networkgl3,26,32,3% However, the ex-

panding effect is stronger than the contracting one since a

: . clustered state is unstable against feedback spikes from other
densityp(t). On the basis of E¢7), we can choose a char- clusters. The time course of 30 neurons toward full synchro-

acteristic periodl'y <t,. We define the phasg¢ by replacing nization is shown in Fig. @). We choosep(t) to be an

To with T in Eq. (16). Roughly speaking, the value @  eyponential distributionp(t)=e /) with A =0.04step *

drifts toward ¢=1 with a constant velocity when external pased on biological evidence of cortical neur¢as.

spikes are periodic with the periot; . We also examine the effect of small white Gaussian noise
If sup suppp<t,, we should sef; =supsupp. In this  to each neurofFig. 2b) and Fig. Zc)]. If o is small enough,

situation, interspike intervals are equal to or less tiign neurons remain synchronous without serious degradation due

Negative phase shifts in the absence of inputs are compets noises. In Fig. @), we find just a slight increase ig(t)

sated by positive phase shifts by external spikes. When aafter the full synchronous state is almost realifeg 2000

N

T+

The synchronization parametgi(t)=0 iff N neurons are
fully synchronous, ang(t) is largest when the states bff
neurons distribute uniformly ifh0, 1], in which case x(t)
=N?2/8. Figure 1 demonstrates that full synchronization is
reached around= 2680 (steps, and x(t) can characterize

aperiodic. We assume that=y ande are fixed. The inter-
spike intervalT, is determined according to the probability
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FIG. 2. Behavior of the synchronization paramejgtt) of 30 excitable LIF neurons coupled by spikes=0.18, e=0.005, and
y=0.003 (step *. Interspike intervals of external inputs have probability densitt) =e~%%4/0.04 (step!. White noise intensity is
=0 (step~* (a), 0=0.003(step* (b), and o= 0.009(step ! (c).

(steps]. Though the white noise has a tendency to break thet a virtually constant velocity. Such synchronization is
synchrony, each external spike puts the whole network backaused by external spikes separated by relatively short inter-
to full synchrony. This order creation driven by external vals, which repulsively disperse the phasesNoheurons.
spikes is important from the viewpoint of temporal spike This synchronization scenario is totally different from the
coding[31] that cortical information may be coded on the contracting one stated in the previous theorem although ab-
timing of the spikes, often in the form of synchronous firing. sence of interactions is common to both cases. Common ex-
The firings of excitable LIF neurons can synchronize everternal inputs are entraining a neural population so that the
when the states between external spikes are not equal owimgeurons fire synchronously to code information robustly, re-
to noise or other factors. On the other handgifs not so  gardless of interactions. Of course, synchronization with no
small[Fig. 2(c)], neurons behave randomly where effects ofcoupling is biologically implausiblél]. Furthermore, pulse
noise overwhelms synchronizing effects of the externakoupling accelerates synchronization even though it is math-
spikes. ematically unnecessary. The synchronization in biological
A remarkable point is that neurons can synchronize evemeurons may be based on both effects of the external inputs
when they do not interact, if the noise is sufficiently weak.and the mutual interactions. The time course toward synchro-
This type of synchronization is not possible when the externization when feedback couplings are abseat=0) is
nal inputs are periodic, in which case the valuefathanges shown in Fig. 3 fory=0.003 (step %, €=0.18, andp(t)

120 120

x @ xX ™

80 | 1 80 -
40 | g a0 |
o o l p
[+ 5000 10000 15000 o 5000 10000 15000
time (steps) time (steps)
120
X (<)
80 |
a0 | J J\
o h
o 5000 10000 15000

time (steps)

FIG. 3. Behavior of the synchronization parameiét) of 30 excitable LIF neurons without coupling=0.18, e=0, and y=0.003
(step L. Interspike intervals of external inputs have probability density = e~ %°4/0.04 (step 1. White noise intensity isr=0 (step *
(@), o=0.0001(step* (b), ando=0.0003(step ~* (c).

051906-6



SYNCHRONIZATION OF PULSE-COUPLED EXCITABE.. .. PHYSICAL REVIEW E 64 051906

120 120

X @ x ®)
80 | 4 80 r
40 | B 40
o o
(o] 500 1000 1500 2000 [o] 500 1000 1500 2000
time (steps) time (steps)
120
X <)
80
40 }
o]
o 500 1000 1500 2000

time (steps)

FIG. 4. Behavior of the synchronization parametdt) of 30 pulse coupled excitable LIF neurons with absolute refractoriness.
=0.18, y=0.003 (stepl), ande=0.005. Interspike intervals of external inputs have probability dengity=e~°%4%0.04 (stepl). The
absolutely refractory periodt of the neuron is set equal to(8tep ! (a), 6 (step ™ (b), and 10(step ™2 (c).

being the same exponential distribution as in Fig. 2. We als@bsolutely refractory periodt is set equal to @step * (a),
investigated noise effects in Fig(® and Fig. 3c). Full 6 (step ! (b) and 10(step ! (c). Figure 4 shows that syn-
synchronization is achieved even in the absence of pulsehronization is accelerated when the absolute refractoriness
coupling [Fig. 3(@)]. However, this synchronization is not is introduced.

stable against noises; Fig3 and Fig. 3c) shows that syn- In this section we have shown by applying the phase de-
chronization collapses intermittently. Cooperation of exter-scriptions that excitable LIF neurons with pulse coupling can
nal spikes and pulse couplings plays an important role irsynchronize by the same mechanism as oscillatory LIF neu-

realizing and keeping synchronous behavior. rons. We have also observed phenomena such as entrainment
Our result is consistent with the known results for thedriven by external spikes and acceleration of synchronization
excitable neurons without external spike inpUgs]: full by refractoriness. They are based on the pulselike nature of

synchronization in most cases and cluster states in somexternal inputs.
cases. In Ref.36], the increase in internal states were driven
only by mutual interactions at a sufficiently high rate. They

derived the condition of sustained firing and synchronization V. PULSE-COUPLED NAGUMO-SATO NEURONS

for y=0 analytically and fory>0 numerically. Although The LIF neuron models are continuous in time, but there
our model does not include delay, we have treated generalre also many discrete-time neuron models. Discrete-time
cases withy>0. neuron models can be naturally derived from continuous

We can also generalize uniform coupling constants tmeuron model§17,36. They have been widely used because
nonuniform one$12,24,29. We denote the generalized cou- they are easier to analyze and numerically calculate, and can
pling strength bye; ;, which has the dependence on a pr-exhibit important properties of biological neurons. The ana-
esynaptic [th) neuron and a postsynaptidt{) neuron. Full  Iytical calculation benefits from abundant results, for ex-
synchronization is guaranteed also wkendepends only on  ample, of combinatorial mathematics, Turing machines, and
i [12,24, or only onj [24]. We note that a network with cellular automata. Discrete-time neuron models are also use-
random positives; ; can also be led to synchronizati¢ttata  ful in applications such as associative memories; they also
not shown [29]. Excitatory interactions result in the full syn- suit to implementation on electronic devices.
chronization driven by external spikes, and this phenomenon Discrete-time neurons have often been analyzed by using
is regardless of precise coupling structures. combinatorial method§17,36 that are not based on phase

Synchronization is more easily reached when absolute reaeductions. Considering the results in the last section, it
fractoriness is introduced 7]. We assume that a neuron re- seems advisable to combine the discrete-time and
ceives neither external nor feedback spike effecta\fioafter ~ continuous-time neuron models. In this section, we unify
its latest firing. For simplicity let us conjecture a simple net-discrete-time models and continuous-time models using the
work comprising only two neurons. We assume that thephase description; we extend the phase description to the
states of two neurons come close enough to each other sliscrete-time neuron models.
that the second neuron fires withit after the first neuron We use the NS neuron modf40] as an example of
fires. In this case the first neuron does not receive a spikdiscrete-time neurons. This model is derived on the basis of
effect from the second one; the first one waits for the seconthe Caianiello’s neuronic equatigd1], which is equivalent
one, without a phase jump. The simulation results exploringo time-discretization of the neuron model used by Caianiello
the effect of absolute refractoriness are shown in Fig. 4. Thend De Luca[42]. The dynamics of the NS neuron is de-
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scribed by one-dimensional mapping with the internal state ab at+b—1
denoted byx(t) (teN) as follows: $=9g(x)=In ab—(b—1)x In—¢p—*1 (24)
@Jra_l [x(t)=0], As a result, we can expect phase dynamics similar to that of
1)= b 21 an excitable LIF neuron whex(t) <0,
x(t+1)= X(t) (1) According to Eq.(21), x certainly falls intox(t)=0 in a
-5 ta [x(t)<0], finite time. This encourages us to defines<Inb/In[(a

+b—1)/(ab)]+1 (for 0=<x<a) by using Eq.24) to describe
whereb>1 and 0<a<1. x(t) is monotonically increasing wh_ole ph_ase Qynamics. We should then determ?ne_the phase
in [—, 0) and[0, «]. If an iteration starts from(t) <0, then shift per iterationA¢ when ¢=1. For ¢=1, substituting
X increases untik satisfiesx(t')>0 aftert’ —t stepsx=0 is b b1
understood as the threshold for firing. Consequently, the neu- X=9 (p)= a [1_ ] (25)
ron fires andk(t’) is reset to a smaller value in the next step. b—1
x(t"+1) falls in the left branchX<0) unlessx(t’) is too
large or the neuron receives too much feedback input fronto
other neuronginteractions between neurons will be defined
laten. The effect of the external input is reflected in a mono- .
tonically increasing property of E¢21) in [—<, 0). We can ¢,
regard the NS neuron as both an oscillatory neuron and an
excitable neuron. It is considered oscillatory if we supposeve have
we are periodically observing a leaky neuron receiving a
suprathreshold bias. On the other hand, it is considered ex- 1 b—1/at+b—-1\¢* atb-1
citable if we suppose that it is a leaky neuron receiving a ”[5+ “ab |\ ab } In ab
subthreshold bias, and we are observing it at every instant it (26)
receives an external spike.

The minimum possible value of(t) is a—1 except in  As is expectedA ¢<0 for ¢=1, corresponding to the reset-

transient states caused by negative large initial conditionsing of x immediately after firing.
Sincex(t)>0 is reset to a negative value in one step(if) The single NS neuron approaches an identical stable pe-
is not too large, we are mainly interested ¥{t)e[a riodic solution for any initial conditions(0) [40]. In our
—1,0]. In this range, the phasg=g(x) should be monoto- phase description, the phase shif) is constant when 0
nously increasing, and as the boundary conditions, wes$<1. The contractive property of EqR1) is represented
suppose in the contracting phase shift dynamics whées1; differ-

g(a—1)=0 and g(0)=1 entiating Eq.(26), we have

ab
a+b—-1

X
A¢p=g B+a—1

We allow ¢>1 corresponding ta>0. The phasep for an —1l<———<O. (27)
excitable LIF neuron has been defined so that it changes at a d¢

constant velocity on the average under periodic extern
spikes. Recalling Eq(18), we define¢=g(x) for the NS
neuron so that it satisfies

a.|_0 capture the way of convergence to a periodic solution
using the phase dynamics, we consider a distribution of the
phase whose support is included ip0,Inb/In[(a+b
—1)/(ab)]+1]. We start from these initial conditions. The
(x<0), (220  phase space can be divided into a finite number of connected
regions according to the number of steps it takes for the
neuronal state to satisiyg>1. The phase density in a region
remains unchanged until the neuron fires. Wigen1 is re-
alized, the region contracts, and the contracted region is
pulled back intop€[0,1). Then the region again drifts to-
ward ¢>1 under iterations. In the course of iterations, the
density restricted to a region contracts every time the neuron
-1 fires. The number of points that asymptotically have positive
density is the same as the number of regions. These points
form the periodic solution of Eq(21). We note that this
picture is obtained even if we do not persist in phase descrip-
tion; we can conclude the convergent property based on the
factor 1b in Eq. (21). The reason we adopt the phase de-
scription is that it enables us to investigate collective behav-
Compatibility conditions ofA>0 and B>0 are satisfied. ior of coupled NS neurons easily. Spike couplings can be
Finally, ¢ is represented by interpreted as phase jumps and we can make use of results

X
g(x)+A¢p=g E+a
with a fixed A¢. A¢ denotes the positive phase shift per
iteration, independent ap. Since the NS neuron has a decay
similar to that of an excitable LIF neuron, we postulate that
takes the same form as Ed.7). Substitution of Eq(17) into
Eq. (22) then yields

a+b—1
ab

a+ 1
D=1, and A¢>=Inb/|n b (23
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FIG. 5. (a), (b) Behavior of 30 NS neurons coupled by spikes with strergtl®.005 whera=0.02,b=1.15, and the internal peridd
of the single neuron is 20step3. (c) Behavior of the synchronization paramejgit) corresponding tda) and (b). (d) Behavior of the
synchronization parametei(t) whena=0.18,b=1.15,¢=0.01, andP=4 (steps3.

obtained for LIF neurons since the definition of the phase othat theith neuron and thgth neuron fire simultaneously.
the NS neuron is closely related to that of phase of a LIRye note that the absorption is not absolute; generally speak-
neuron. . . . ing, x;(t) andx;(t) do not take the same value even if they
Our next step is to introduce pulse coupling. We denotg,aye fired simultaneously. However, we note that the phase
the state of theth neuron at time by x;(t). We assume that 4 iaples corresponding ta(t+1) andx;(t+1) are close
theith neuron fires whem;(t)=0. When it fires, it sends @ ;4 that the neurons receive interactivle spikestat. Ac-
spike with the amplitude at the next time to all the neurons cordingly, the expanding effect at 1 is weaker for théth
except itself. The uniform synaptic delay is considered inand jth ’neurons than for the other neurons since

this framework.x;(t)>0 is automatically reset ta;(t+1) 2 2 .
<0 at the next step. The couplings are uniform and all to all.(d 7)/d$">0. f the contracting effect surpasses the ex-

The phase return magih) for ¢<1 is calculated using Egs. panding effect, then thigh and thejth neurons synchronize

(24) and (25) as asymptotically. The lack of absolute refractoriness is par-
tially compensated by the property of the network that the

r(¢)=9glg () + €] interactions among simultaneously firing neurons are weaker

than those among the other neurons in the space of the phase

a+b—1\1"¢ b-1 a+b—-1 variables. This property of the neural network is also re-

=In ab ) T Tab 6]/ nTJrl- garded as the relative refractoriness. Even though the ex-
panding effect still overwhelms the contracting effect at this
Consequently, stage, simultaneous firing of a larger number of neurons will

cause contracting behavior. Thus, simultaneously firing neu-
dr (b—1)e rons are likely to synchronize asymptotically to form a clus-
@: T ab ter with intracluster synchronization. On the other hand,
clusters interact by pulse coupling. This interaction is essen-
which assures that the behavior of pulse-coupled NS neuroriiglly the same as that of oscillatory LIF neurons. In most
receiving a feedback spike is expansive. In contrast, accordases, all the neurons finally synchronize. We can also ob-
ing to Eq.(27), we know that the NS neurons have the ten-serve avalanche phenomena since stronger interactions occur
dency to converge to a periodic solution and form clustersis cluster sizes become large. The time courseNof
around the periodic points. The actual dynamics are deter=30 NS neurons coupled by spikes with strength0.005 is
mined by the tradeoff between these two effects, which arshown in Fig. %a) and Fig. §b) for a=0.02 ando=1.15. No
influential wheng<<1 and¢=1, respectively. noise is applied to neurons. Figuréch shows the corre-

If random initial conditions are taken, we can expectsponding synchronization parametg(t) defined in Eq.
X;(t)'s (1<i=<N) to be distributed randomly at first. Thth  (20). We can see that synchronization is achieved as a result
neuron receive®l—1 feedback spikes during its successiveof pulse couplings. For these parameter values, the period of
firings in this stage. For an appropriately largghe expand- the periodic solution of the single neuronRs=20 (steps.
ing effect is larger than the contracting one. Accordingly, the Figure 5d) shows y(t) whena=0.18, b=1.15, ande
internal states of neurons travel in a ergodic manner like=0.01. In this case, full synchronization does not appear and
those of oscillatory LIF neurons. In the course of iterations,the asymptotic collective behavior is a two-cluster state. The
some neurons occasionally fire simultaneously. We assumsate of each NS neuron converges to the same periodic so-

ab
at+b—1

1-¢) -1
] >1, (28
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FIG. 6. Behavior of the synchronization parametér) for 30 NS neurons coupled by spikes with strength0.005 whena=0.07,
b=1.15, and the internal peridd of the single neuron is &teps. Uniformly distributed independent noises with the dynamic ramgee
applied to all the neuronga) o=0 (step %, (b) 0=0.012(step %, (c) c=0.018(step %, and(d) =0.028(step *.

lution with P=4 (steps. Accordingly, the two clusters con- biases are set at slightly subthreshold values. For instance,
verge to the same periodic solution, but their phases are difeR is observed in coupled FitzHugh-Nagumo neurphy
ferent. Each periodic point has the large attractive basin oaind coupled Hodgkin-Huxley neuronp45]. Moreover,

the size~1/P in this case. Feedback spikes are not strongioise-induced synchronization in the NS neurons is also
enough to propel neurons out of the basins. Nevertheless, waimilar to simulated annealing. In simulated annealing, a glo-
observe noise-induced full synchronization of coupled NSbal optimization problem is solved by noises whose strengths
neurons. The noise enables a neuron to escape from an aradually decrease so that the internal state can get out of
tractive basin of a clustered state. If the noise is strondocal optima. Clustered states are less stable than the fully
enough to make the neurons get out of clusters but not ssynchronous state since clusters have smaller attractive ba-
strong as to destroy intracluster synchronization, then fulkins than the fully synchronous state does. Noises are effec-
synchronization can be induced by noise. We performed &ive in driving the network out of quasioptimal clustered
simulation in which we added uniformly distributed indepen- states.

dent noises with the dynamic rangeto 30 neurons. The

results whera=0.07,b=1.15, e=0.005, andP =8 (steps V. DISCUSSIONS

are shown in Fig. 6. As Fig.(8) shows, without noise, the
population falls into a clustered state with two clusters. This
is because attractive basins of periodic points are relatively \We have shown that networks of excitable LIF neurons
large compared te. The collective behavior can not escape without the delay and the NS neurons with the uniform delay
out of the clustered state without noise. Figutb)@nd Fig.  become fully synchronized in most cases. We have proposed
6(c), however, show that neurons synchronize when noiseg phase-based framework for studying the pulse-coupled ex-
are applied. Whermr=0.012 (Ste[_)l) [Fig. 6(b)], each neu- citable neurons.

ron first falls into one of five clusters a&=50 (steps. The Though we have concentrated on the analysis of synchro-
number of clusters decreases to thre¢=a850 (stepg, and  nized behavior in this paper, stable clustered solutions
to two att=800 (step$. Finally, the network state converges [17,22,26,27,32,33and asynchronous statigs,20,34 have

into one group at=1100 (step3. Wheno=0.018 (step?) also been found in more general networks. This multistabil-
[Fig. 6(c)], full synchrony is realized in an earlier stage. Theity is related to the superposition problg7]. Investiga-
final state is the fully synchronous state deteriorated by contions of more general cases are our future problem.
tinuously added noises. In these two cases, moderate We must also pay attention to the role of external inputs.
strengths of white noises help the network state to go out oNo matter whether suprathreshold or subthreshold, inputs
the clustered state. The state falls in the full synchronousiave been supposed to be common to all the neurons in
state with a high probability since it is the most stable solu-many studies, including ours. This simple supposition has
tion with the largest basin. Synchronization does not occurgnabled us to conclude that neurons synchronize even with-
on the other hand, when the noise amplitude is too lfwge out interactions, entrained by external spikes. Though the
=0.028 (step?) in Fig. 6(d)]. synchronization without coupling is unrealisfit], it is pos-

The noise-induced synchronization resembles coherencsble for those neurons that receive the same external inputs
resonancé€CR) [43—45 in the meaning that both are ordered and mutual interactions through coupling to synchronize to
states realized with the help of noise. For CR in continuousform an assembly. The external inputs representing informa-
time models, noise evokes coherent firing in neurons whetion signals can be nonuniforf@6]. Synchronization in an

A. Possible extensions
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actual assembly may occur as a result of the combined efator in most cases where firings are promoted by spike in-
fects of feedback interactions and entrainment by externgbuts from neurons outside a fixed assembly as well as by
inputs. feedback spikes inside the assembly. The technique devel-
oped in this paper is also useful for analyzing dynamics of
B. Contracting or expanding? neuronal assemblies within a huge population, since we can
o o look upon the neurons outside the assembly as an external
We comment on the possibility of realistic routes to syn-goyrce of spikes.
chronization. In a network of LIF neurons the aggregated Another model to be noted is the nonleaky integrate-and-
phase variableD travels ergodically and chaotically until it fire neuron that corresponds to the LIF neuron wjthy
reaches an attractive basin of absorption. Local stability of-g  anp arbitrarily small positive bias makes this kind of
synchrony is based on absorption. The synchronizatiojeyron a linear oscillatory integrat§®5]. In the excitable
mechanism of nonleaky linear neurons is also based on efzse with a subthreshold bias, the statdoes not change
godicity [25]. In a network of the FitzHugh-Nagumo neu- ypless external spikes arrive. Networks of these excitable
rons, on the other _hand, the collected phase variable is COoRronleaky neurons that spontaneously fire only by mutual ex-
tracting and there is no absolute absorp(i88]. Synchrony  changes of spikes were analyzed in R86], which showed
would be achieved only in the limit of infinite time. The that full synchronization occurs in most cases and clusters
local vqum_e around the stable point contracts on receivingyppear for some initial conditions. The phase variable for
external spikes. . ~this neuron is discretized after transient activity; a neuron
Though ergodicity-based scenarios are mathematlcallyakesm:[h/—e] states 0,1#1—1),2/(m—1),...,(Mm—2)/(m
perfect, their application to the synchronization of actual net-_ 1), and 1 whereh is the threshold angix] denotes the
work of neurons is questionable because the assumption ghyndup ofx. We can easily show that the neurons synchro-
absolute absorption is biologically implausible. If absorptionpize if e>h/N andeis comparatively larger thaa Though
is not absolute, small fluctuations caused by noises mighye do not further examine this model here, we are interested
grow because of the expanding dynamics. Furthermore, the, it since it is related to coincidence detector models
proof of the synchronization is combinatorial and tells us[31 4g. A coincidence detector neuron fires if it receives
nothing about the synchronization time. Synchronizationygre spikes than the threshold within a short time window.
may require a longer time than is biologically feasible. ThisThe coincidence detectors are usually at their resting poten-
situation is common to primitive chaos control techniques ina|s wajting for simultaneous input spikes. Each discrete
which the controller must wait for a long time before the yhase value would correspond to the number of received
state falls near the desired fixed poja]. Our analysis of  gpikes within the time window. However, the phase is at the
excitable LIF neurons and the NS neurons is also subject tpasting states in most cases, and the phase description is not
ergodicity-based evidence although more general routes tgfective to express the dynamical behavior of coincidence
synchronization are suggested by analyzing the case of digetectors. Considerations of delay and of more general cou-

tributed interspike intervals of external inputs. Biological plings are required for understanding the computational role
situations are between two extremes represented by the eyt coincidence detectof81,35,48.

panding and contracting dynamics.

APPENDIX: PROOF OF THE THEOREM
C. Oscillatoriness and excitability
: . To prove the theorem, we assume sup sufp>t,, and
In oscillatory SVSte”?S’ the phasfe variable changes at fhen we can take; >t such thaip(t,)>0. Accordingly, the
constant speed proportional to the internal frequency. In ex-

citable systems, in contrast, the phase drifts in the negativ'é1terSpIke interval of external spikes is equaltiowith a

direction when there are no external inputs. An externaPOS't'Ve probability. Then, without loss of generality, we can

spike makes the phase jump towards the positive directionions'der _a situation in which external spikes arrivetat
compensating the negative phase drift. The phase has peerka: (k=1.2,...). Using Eq.(6),
defined so that both effects are almost balanced; the phase
has a constant positive velocity on the average when the

external spike arrives periodicall ith a prescribed period. . .
X bt Ves perlocicaly Wi P ! pert where x;(kt;) and x[(k+1)t,] are the internal states just

In this way, excitable systems have been related to osciIIaB ¢ b ext | spike i ved. Usi ith
tory systems. With the use of the results for oscillatory LIF€/0r¢ eackfﬁe;\r/\: hsagllee is received. Using @d.) wi

neurons, we have proven that neurons synchronize when tﬁ%: 0.1,.
interspike intervals of external input are less than a pre- —Tkt
: : ; ; — — 1-e 71
scribed period. Full synchrony can be also realized in most x;(kty)=x;(0)e~ 1+ ee "1 _
cases with more general types of interspike intervals in ne ! 1-e "
which interspike intervals are more widely distributed.
Firing can be driven by suprathreshold biases. These biAccordingly, for everys>0, we can takek; such that
ases may come into play, for example, when sensory neurons
strongly respond to large external stimuli and when a living IXi(kity) —X]< 8,
thing is carrying some mental or physical activities. On the
other hand, a neuron is not an intrinsic self-sustained osciwhere

xi[(k+1)ty]=[x;(kty) +ele™ 7, (A1)
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We assume that spikes arrive at an interval t, after k;
external spikes have come. Then evefyt) is pushed up
faster than it decays, and eventually title neuron fires. We
consider a neuron that atk;t; has statex(k;t;) =% and
assume that this neuron would fire after receiviggmore
periodic external spikes of the peridd. The state of the
imaginary neuron just before receiving tkgth spike satis-
fies

X(k1t1+ k2t2)> h_?

N neurons fire synchronously &t k;t; +kst, if we choose

PHYSICAL REVIEW E 64 051906

0=X(Kyt; +katy) = (h—e),
since for evernyi it follows that
Xi(k1t1+ kztz) >X( k1t1+ k2t2) - 5> h_?

OnceN neurons fire synchronously, they are synchronous in
the future because,(t) takes the same value for all This
completes the proof.

ACKNOWLEDGMENTS

We thank I. Tokuda for helpful discussions and sugges-
tions on this work. This work is supported by the Japan
Society for the Promotion of Science and CREST, JST.

[1] R. Eckhornet al,, Biol. Cybern.60, 121 (1988.

[2] C. M. Gray, P. Kmig, A. K. Engel, and W. Singer, Nature
(London 338 334(1989.

[3] E. Vaadiaet al, Nature(London 373 515(1995.

[4] E. Rodriguezet al, Nature(London 397, 430(1999.

[5] S. H. Strogatz and |. Stewart, Sci. A@69 (6), 68 (1993.

[6] Y. Kuramoto, Prog. Theor. Phys. Suppl9, 223 (1984);
Chemical Oscillations, Waves, and Turbulen¢®pringer-
Verlag, Berlin, 1984

[7] Models of Neural Networks,ledited by E. Domany, J. L. van
Hemmen, and K. Sculte(Springer-Verlag, New York, 1994

[8] F. C. Hoppensteadt and E. M. IzhikevidWeakly Connected
Neural NetworkgSpringer-Verlag, New York, 1997

[9] J. Keener and J. SneydVlathematical Biology(Springer-
Verlag, New York, 1998

[10] G. Tama, E. H. Buhl, A. Laincz, and P. Somogyi, Nat. Neu-
rosci. 3, 366 (2000.
[11] C. S. PeskinMathematical Aspects of Heart Physiolo@ou-

[24] S. Bottani, Phys. Rev. B4, 2334(1996.

[25] W. Senn and R. Urbanczik, SIANSoc. Ind. Appl. Math. J.
Appl. Math. 61, 1143(2000.

[26] U. Ernst, K. Pawelzik, and T. Geisel, Phys. Rev. Lét. 1570
(1995; Phys. Rev. B57, 2150(1998.

[27] D. Golomb and J. Rinzel, Physica T2, 259 (1994).

[28] A. Nischwitz and H. Glader, Biol. Cybern73, 389 (1995.

[29] X. Guardiola, A. Diaz-Guilera, M. Llas, and C. J.ree, Phys.
Rev. E62, 5565(2000.

[30] L. Neltner, D. Hansel, G. Mato, and C. Meunier, Neural Com-
put. 12, 1607(2000.

[31] H. Fujii, H. Ito, K. Aihara, N. Ichinose, and M. Tsukada, Neu-
ral Networks9, 1303(1996.

[32] D. Hansel, G. Mato, and C. Meunier, Europhys. L&8, 367
(1993.

[33] D. Hansel, G. Mato, and C. Meunier, Neural Compyt307
(1995.

[34] C. van Vreeswijk, Phys. Rev. Let4, 5110(2000.

rant Institute of Mathematical Sciences, New York University, [35] K. T. Judd and K. Aihara, Neural Networkg 203 (1993;

New York, 1979, pp. 268—-278.

[12] R. E. Mirollo and S. H. Strogatz, SIAMSoc. Ind. Appl.
Math, J. Appl. Math.50, 1645(1990.

[13] Y. Kuramoto, Physica 30, 15 (199J).

[14] A. T. Winfree, J. Theor. Bioll6, 15(1967); The Geometry of
Biological Time(Springer-Verlag, New York, 1980L. Glass

and M. C. MackeyFrom Clocks to Chaos—the Rhythms of

Life (Princeton University Press, Princeton, 1988

[15] P. C. Bressloff, SIAM(Soc. Ind. Appl. Math. J. Appl. Math.
60, 820(2000.

[16] P. C. Bressloff, J. Math. Biok0, 169 (2000.

[17] M. Usher, H. G. Schuster, and E. Niebur, Neural Comput.
570(1993.

[18] L. Abbott and C. van Vreeswijk, Phys. Rev. &8, 1483
(1993.

[19] P. C. Bressloff and S. Coombes, Physicd 80, 232 (1999.

[20] P. C. Bressloff and S. Coombes, Neural Compl®, 91
(2000.

[21] B. Ermentrout, J. Comput. Neuros&i. 191 (1998.

[22] C. van Vreeswijk, Phys. Rev. B4, 5522(1996.

[23] S. Bottani, Phys. Rev. Let?4, 4189(1995.

ibid. 7, 1491(1994; Int. J. Bifurcation Chaos Appl. Sci. Eng.
10, 2415 (2000; H. Suzuki et al, Biol. Cybern. 82, 305
(2000.

[36] C. van Vreeswijk and L. F. Abbott, SIAMSoc. Ind. Appl.
Math, J. Appl. Math.53, 253(1993.

[37] N. Ichinose, K. Aihara, and K. Judd, Int. J. Bifurcation Chaos
Appl. Sci. Eng.8, 2375(1998.

[38] L. Lapicque, J. Physiol. Pathol. Ge#. 620 (1907).

[39] H. C. Tuckwell, Introduction to Theoretical Neurobiology
(The Press Syndicate of the University of Cambridge, New
York, 1988, Vol. 1, pp. 85-123.

[40] J. Nagumo and S. Sato, KyberneliR, 155(1972; K. Aihara,

T. Takabe, and M. Toyoda, Phys. Lett.144, 333(1990.

[41] E. R. Caianiello, J. Theor. Bioll, 204 (1961).

[42] E. R. Caianiello and A. De Luca, Kybernetik 33 (1966.

[43] H. Ganget al,, Phys. Rev. Lett71, 807(1993; A. S. Pikovsky
and J. Kurthsjbid. 78, 775(1997; A. Longtin, Phys. Rev. E
55, 868(1997); B. Lindner and L. Schimansky-Geiehjd. 60,
7270(1999.

[44] C. Kurrer and K. Schulten, Phys. Rev.H, 6213(1995; I.
Tokuda and K. Aihara, in Proceedings of the Fifth Interna-

051906-12



SYNCHRONIZATION OF PULSE-COUPLED EXCITABE.. .. PHYSICAL REVIEW E 64 051906

tional Symposium on Artificial Life and RoboticGAROB [46] M. Watanabe, K. Aihara, and S. Kondo, Biol. Cyberi8, 87

5th’00), p. 177; B. Hu and C. Zhou, Phys. Rev.6&, R1001 (1998.

(2000. [47] E. Oftt, C. Grebogi, and J. A. Yorke, Phys. Rev. Létt, 1196
[45] Y. Wang, D. T. W. Chik, and Z. D. Wang, Phys. Rev.6H, (1990.

740(2000. [48] M. Abeles, Isr J. Med. Scil8, 83(1982.

051906-13



