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Abstract— Various cryptosystems utilizing
chaotic maps have already been proposed. We pro-
posed a chaotic cryptosystem by constructing a finite-
state baker’s map in the previous paper. In the present
paper, we explain this cryptosystem, and analyze its
security chiefly by simulation. Some theoretical com-
ments for security analysis are also accompanied.

I. Introduction

Various cryptosystems based on deterministic chaos
have already been presented. Among them are ones
utilizing chaos synchronization and/or chaos control
methods. As an example, the sender and receiver share
the parameter values of the chaotic map used for the
carrier as the secret key. The receiver reconstructs the
exact carrier by synchronization technique to extract
the transmitted message.

There are other types of chaos-based cryptosystems:
the stream cipher which employs chaos to generate a
key, and the block cipher which transforms plaintexts
directly by a chaotic map. The stream type generates
a random-looking key stream by iteratively performing
chaotic map. The security depends on the character-
istics of the random-looking key stream. Its statisti-
cal property has been examined [1, 2]. On the other
hand, the block type divides the message into blocks,
and transform each block by performing a chaotic map
iteratively [3, 4, 5]. A block must be long enough, and
the property of chaotic transform is again important
for security. There are both digital and analog ver-
sions of these types, but some of them[3, 4] were al-
ready broken with differential cryptoanalysis owing to
their strong local linearity[6, 8, 7].

In our previous paper [8], we first decrypted a chaos-
based digital block cipher [4] with a two-dimensional
cut map. The weakness of this cryptosystem comes
from strong linearity of the cut map and mixed-use
of digital and analog representations. We then pro-
posed another chaos-based block cipher which over-
comes these difficulties. The new cryptosystem profits
from a one-to-one transformation on a finite set. It

is realized by discretizing a tent map with a special
truncation. This cryptosystem has improved theoret-
ical security as shown in [8] and as will be shown in
the present paper.

In the present paper, we first review the cryptosys-
tem based on a finite-state baker’s map and its the-
oretical analysis to determine the sufficient iteration
number. Next, we show by simulation that a much
smaller iteration number is satisfactory for practical
use. The discussion part deals with theoretical sug-
gestions.

II. Cryptosystem based on a finite-state

baker’s map

A. Construction of the cryptosystem

We review the cryptosystem proposed in [8] with some
generalization in the state space.

We use a modification of a tent map to transform
plaintexts into ciphertexts. The uniqueness of decryp-
tion would be lost with a simple application of the tent
map because the tent map is two-to-one mapping. Ac-
cordingly, we discretize the plaintext space (P ), the
ciphertext space (C) and the transformation so that
we can achieve a one-to-one finite-state baker’s map.

We put

P = C = {x = M−1X ; X ∈ N, 1 ≤ X ≤ M}

for M ≥ 2. One-dimensional tent map (Fig. 1) is
defined by

fa(x) =

{

x
a

(0 < x ≤ a),
x−1

a−1
(a < x ≤ 1),

f−1
a (x) = ax or 1 + (a − 1)x.

Next, we define a modification of fa(x) by

f̃a(x) ≡
|{x′ ∈ P |fa(x

′) < fa(x))| + 1

M
.

where |·| indicates the cardinality of a set. This func-
tion is naturally interpredted as the ascending order of
fa(x) in {fa(x

′)|x′ ∈ P}, followed by normalization.
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Figure 1: Tent map: xn+1 = fa(xn).

If x1 < a < x2 and fa(x1) = fa(x2), we put

f̃a(x1) + M−1 = f̃a(x2). (1)

f̃a maps P to P in a one-to-one manner.
We redefine the space and the transform on an in-

teger space for practical use. We write X = Mx, Y =
My, A = Ma, and

P ′ = C′ = {X ; X ∈ N, 1 ≤ X ≤ M},

K ′ = {A; A ∈ N, 1 ≤ A ≤ M}.

P ′ , C′ and K ′ denote the plaintext space, the ci-
phertext space and the key space, respectively. The
cryptosystem is defined by

eA : P ′ → C′, eA(X) = F̃A

n
(X)(encryption rule),

dA : C′ → P ′, dA(X) = F̃A

−n
(X)(decryption rule),

where

F̃A(X) =

{ ⌈

M
A

X
⌉

, (1 ≤ X ≤ A),
⌊

M
M−A

(M − X)
⌋

+ 1, (A < X ≤ M)

consistent with the definition of f̃a(x)[8]. ⌊z⌋ and ⌈z⌉
denotes round-off and round-up of z, respectively.

The decryption function is given by

f̃a

−1

(y) = x′ s.t. fa(x
′) is the My th smallest.

We put

X1 =
⌊

M−1AY
⌋

, X2 =
⌈

(M−1A − 1)Y + M
⌉

.

It follows that

fa(M−1X1) ≤ M−1Y < fa(M−1(X1 + 1)),

fa(M−1X2) ≤ M−1Y < fa(M−1(X2 − 1)).

We denote by m(y) the number of x ∈ P which is
included in [0, x1]∪ [x2, 1]. We showed that (i) m(y) =
Y or (ii) m(y) = Y + 1 holds [8]. When (i) holds,

F̃A

−1
(Y ) =

{

X1, (X1

A
> X2−M

A−M
),

X2, (X1

A
≤ X2−M

A−M
),

and when (ii) holds, simple calculation leads to

F̃A

−1
(Y ) = X1.

B. Sensitive dependence on plaintexts and

keys

We evaluate the iteration number n such that a pair of
next plaintexts is encrypted into a pair of totally differ-
ent ciphertexts. How the minimum difference (= the
unity in the integer notation) between two next plain-
texts expands can be decomposed into the following
three processes.

1. The distance of the unity increases to be twice.

2. The distance grows exponentially to the order of
the plaintext space.

3. f̃a is furthermore iterated enough times to be
almost independent.

We denote by n1, n2, n3 the iteration numbers for
(1), (2) and (3) to hold, respectively. We restrict the
key space within 0.5 < a < 0.6 for a theoretical reason.

We theoretically estimated n1 = 4.3 log10 M, n2 =
3.4 log10 M and n3 = 15 [8]. As a whole, n = n1 +
n2 + n3 = 7.7 log10 M + 15 is sufficient.

The discrepancy-growing process for the two next
keys (with the same plaintext) consists of three steps
similar to those for plaintexts. The calculation leads
to the same results as that for plaintexts: n ∼
7.7 log10 M + 15.

Simulation results show n ∼ 4 log10 M + 15 is suffi-
cient in practical use[8].

C. Characteristics of the proposed

cryptosystem

Some of the representative characteristics of the pro-
posed cryptosystem are as follows.

• Implementation is easy because the map is sim-
ple. Especially, rounding is tractable for digital
computers.

• We are utilizing chaotic properties based on the
tent map. Strictly speaking, our finite-state
baker’s map is not identical to the tent map,
and the discrepancy grows exponentially in the
course of iteration.
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Figure 2: The result for the uniformity test in terms of
plaintexts (U-P, upper) and keys (U-K, lower). M =
1020, S = 1200, l = 100. Three pairs of initial plaintext
and key are tried: {(X1, A1), (X2, A2), (X3, A3)} =
{(85483497692351461897, 54364810590829182407),
(38267471053192397610, 51238969610352216109),
(60821277239516496944, 59494081732494216993)}.
The level of significance 0.01 (χ2

99(0.01) = 134.7) is
also shown.

• M can be any integer larger than/equal to 2.
Taking the calculation complexity into account,
M = 2s is appropriate.

III. Simulation analysis

In this section, we examine the uniformity and the
independence of ciphertexts by computer simulations.
The uniformity assures the diffusion property of the
cryptosystem, and the independency assures sensitive
dependence on a key-value or a plaintext-value. The
statistical uniformity/independence test is designed
with the conventional χ2 test [3, 4]. We examine
the uniformity and the independence in terms of both
plaintexts (test U-P, I-P) and keys (test U-K, I-K).
The tests are designed as follows:

1. the uniformity test (U-P , U-K)

(a) Divide the interval [1,M] into l consecutive
intervals with the same length. The i th
interval is denoted by Ii.

(b) Compute S ciphertexts F̃n
A(X) , F̃n

A(X +1)
, . . . , F̃n

A(X + S − 1) for U-P (or F̃n
A(X) ,

F̃n
A+1

(X) , . . . , F̃n
A+S−1

(X) for U-K) and
count the frequency ki that ciphertexts are
included in Ii.

(c) Evaluate the χ2 statistics given by Eq. (2)
under the null hypothesis that ciphertexts
distributes uniformly; the degree of freedom
for the χ2 statistics is l − 1.

χ2 =
l

∑

i=1

(ki −
S

l
)2/

S

l
. (2)

2. the independence test (I-P , I-K)

(a) Generate l intervals in the same way as the
uniformity test.

(b) Compute S pairs of ciphertexts (F̃n
A(X1) ,

F̃n
A(X1+1)) , . . . (F̃n

A(XS) , F̃n
A(XS+1)) for

I-P (or (F̃n
A1

(X) , F̃n
A1+1

(X)) , . . . (F̃n
AS

(X)

, F̃n
AS+1

(X)) for I-K) and make a l× l con-
tingency table. kij denotes the frequency
that pairs are included in Ii × Ij .

(c) Evaluate the χ2 statistics given by Eq. (3)
under the null hypothesis that the cipher-
texts originating from next two plaintexts
(keys) are independent; the degree of free-
dom for the χ2 statistics is (l− 1)× (l− 1).

χ2 =
1

S

l
∑

i=1

l
∑

j=1

(Skij −
∑l

i=1
kij ·

∑l

j=1
kij)

2

∑l

i=1
kij ·

∑l

j=1
kij

. (3)

The results of these tests are shown in Figs. 2 and
3. They indicate that the uniformity and the indepen-
dence are satisfied for n ≥ 80. n = 80 is much fewer
than the value estimated by analytical investigations.

IV. Analytic suggestions

It is theoretically most important to clarify the role
of discretization. On one hand, discretization results
in the complicated computation in analytical sense.
Rounding a continuous map is hard to describe by an-
alytic functions because of the discontinuity. This fact
covers an explicit expression of encryption rule, and
at the same time, makes the theoretic security anal-
ysis difficult. On the other hand, any discretization
produces a difference between the obtained obrit and
the original continuous orbit. This slight discrepancy
grows exponentially. As a result of iterations, our ci-
phertext can be a pseudo-orbit. Such maps can be
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Figure 3: The result for the independence test in
terms of plaintexts (I-P, upper) and keys (I-K, lower).
M = 1020, S = 2000, l = 15. The same three pairs
as those in the uniformity test are used. The level of
significance 0.01 (χ2

196(0.01) = 245.0) is also shown.

described by β-shadowing. β-shadowing is an approx-
imation of a discretized map, and the discrepancy be-
tween the discretized map and the shadowed chaotic
map is bounded from above [9]. A map which has β-
shadowing has almost the same property as continuous
chaotic map such as the sensitivity on initial conditions
and randomness of almost every orbit [2, 9]. The rela-
tion between β-shadowing and the finite-state baker’s
map will be considered in the future paper.

In relation to this topic, any transform within a fi-
nite set is periodic. Simulation results show discretiza-
tion of the logistic map results in many cycles with
small periods. The attractive basins of such cycles are
quite large [9]. These properties are not appropriate
both for digital realization of chaos and for applica-
tion of a chaotic map to cryptosystems. However, we
do not suspect that the finite state baker’s map has
the fatal property described above because it is one-
to-one, and no cycle is attractive.

The analysis of chaos from a discrete point of view
will enable us to connect discrete maps to continuous

maps when the precision of discrete maps goes to infty.
When it is possible, the evaluation of chaotic proper-
ties is also advantageous to security analysis. The Kol-
mogorov entropy and the Liapunov exponent measure
the rate at which information on initial conditions is
lost in the course of iterations. The iteration number
can be evaluated by these statistics of chaos so that
sufficient security is ensured[5].

V. Conclusion

We have first reviewed the chaotic cryptosystem based
on a finite-state baker’s map and its security analysis.
The presented cryptosystem avoids the piecewise lin-
earity and analog representation, and it has reinforced
security. We have next performed a simulation of se-
curity analysis based on the χ2 test. The simulational
results show that the uniformity and the independence
are ensured for iteration numbers smaller than what is
required theoretically. Finally, we have put some theo-
retical comments regarding to rounding, β-shadowing,
cycles and dynamical systems.
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