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Finite-size effects on the convergence time in continuous-opinion dynamics
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We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model,
each individual’s opinion is represented by a real number on a finite interval, e.g., [0,1], and a uniformly
randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly
chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system
size increases according to a particular functional form in the case of lattice networks. In contrast, unless the
individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is
approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free
networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the
complete graph.
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I. INTRODUCTION

In the last few decades, social dynamics has been exten-
sively studied in various research fields including statistical
physics and complex systems [1,2]. A main drive underlying
such studies is that many social phenomena may be under-
stood in terms of complex macroscopic patterns that emerge
from the interaction between microscopic constituents. In
the present study, we focus on opinion dynamics models,
which have contributed to understanding how collective opin-
ion evolves in a society of individuals who learn from
their neighbors as well as from other sources of informa-
tion such as media [1–9]. In these models, the structure
of interaction among individuals has mainly been mod-
eled by graphs, equivalently networks, in which nodes and
edges represent individuals and their pairwise interaction,
respectively [10–13].

Most models of opinion dynamics have assumed that the
opinion of each individual is either a discrete or continuous
variable. The prototypical model with discrete opinions is
the voter model in which each individual takes one of the
two opinions at any given time [14–17]. Multistate voter
models are variants of the voter model in which individuals
take one of more than two opinions [18–21]. Other vari-
ants include multistate opinion dynamics coevolving with
the network structure [22–25] and multistate majority-vote
models [26–31]. Opinion dynamics models with continuous
opinions may be defined with or without bounded con-
fidence [1,32–34]. Models with bounded confidence, such
as the Deffuant-Weisbuch model [32] and the Hegselmann-
Krause model [33], assume that individuals interact with each
other only when their opinions are close enough. Continuous-
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opinion models without the bounded confidence, which we
consider in the present study, include the model by Abel-
son [35], the DeGroot model [36], the Friedkin-Johnsen
model [37], and their variants. A majority of opinion dynam-
ics models explored in control theory research community are
continuous-opinion models as well [38–41].

A main concern in opinion dynamics models is the emer-
gence of opinion clusters through agreement, compromise, or
imitation processes, starting from initially random or diverse
opinions [1–9]. When there is a unique opinion cluster in the
stationarity, it is called the consensus. In the consensus, all
individuals share the same opinion. The time needed to reach
the consensus, i.e., the consensus time, is known to depend on
the system size, i.e., the number of individuals. Relationships
between the consensus time and the system size have been
studied for the voter model on various networks [42–53]. For
continuous-opinion models, perfect consensus would require
an infinite amount of time, but one can define the conver-
gence time to consensus in multiple reasonable manners. In
particular, when a continuous-opinion dynamics is driven by
an operator matrix, such as the Laplacian matrix, the conver-
gence time has often been investigated in terms of the relevant
eigenvalue of the matrix, such as the spectral gap of the Lapla-
cian matrix [3,38,54–57]. However, these lines of research
mainly focus on the dependence of the convergence time on
the structure of the network of the same size rather than on
that on the system size. The dependence of the consensus time
on the system size in continuous-opinion models has been
studied but mostly when the consensus is achievable in finite
time, i.e., when interacting individuals end up having the same
opinion, e.g., the average of their opinions as in some gossip
models [58–60]. Therefore, the dependence of the conver-
gence time on the system size in continuous-opinion models
when the perfect consensus requires infinite time has not yet
been thoroughly explored.
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In the present study, we numerically investigate finite-size
effects on the time towards consensus in a simple model of
continuous-opinion dynamics without a bounded confidence,
namely, the asymmetric-gossip model that was proposed in
previous studies [3,40]. For this purpose, we consider net-
works with different numbers of nodes and structure. In the
asymmetric-gossip model, a uniformly randomly chosen indi-
vidual updates its opinion by partially mimicking the opinion
of a uniformly randomly chosen neighbor. Thus, this model
can be considered as a continuous-opinion version of the voter
model.

II. MODEL

We study a continuous-opinion dynamics model proposed
in Refs. [3,40]. In this model, which we refer to as the
asymmetric-gossip model following Ref. [40], the opinion of
each individual is represented by a real value. For a system
of N individuals, we denote the opinion of the ith individual
(i = 1, . . . , N) at time t by xi(t ) ∈ [0, 1]. The individuals in-
teract on a connected network of N nodes, and an individual is
located at each node. There are N attempts of opinion updat-
ing per unit time, which implies that each individual updates
its opinion once per unit time on average. In each attempt of
opinion updating, we first select an individual i with the equal
probability, i.e., 1/N , and then select one of i’s neighbors,
say j, uniformly at random. Then, the i’s opinion approaches
the j’s opinion depending on a learning rate parameter q
(0 � q � 1) as follows:

xi

(
t + 1

N

)
= (1 − q)xi(t ) + qx j (t ), (1)

which implies that the i’s new opinion is a weighted sum of the
i’s old opinion and the j’s opinion. The j’s opinion remains
the same.

If q = 0, the opinions never change over time. If q = 1,
the model reduces to the multistate voter model [19,20].
When q = 1, in finite networks (i.e., N < ∞), the consensus
in which all individuals share the same opinion is always
reached in finite time. Finally, if 0 < q < 1, the individuals
are expected to converge to a single opinion, but in a manner
different from that for the multistate voter model.

For describing the ordering dynamics of the individuals’
continuous opinions when 0 < q < 1, we measure the differ-
ence between the opinions of two neighboring individuals i
and j at time t defined by

ρi j (t ) ≡ |xi(t ) − x j (t )|. (2)

We define the network-level difference in opinion by

ρ(t ) ≡ 1

|E |
∑

(i, j)∈E

ρi j (t ), (3)

where E is the set of edges of the network, and |E | is the
number of edges. In numerical simulations, we measure the
convergence time, denoted by T , which we define as the time
at which ρ(t ) becomes smaller than 10−10 for the first time.

In each simulation, we draw the initial opinion of each
individual i uniformly randomly from the interval [0,1].

FIG. 1. Snapshots at different times of the dynamics of the
asymmetric-gossip model on the two-dimensional lattice. We assume
N = 50 × 50 nodes and the periodic boundary conditions. We set
q = 1/2. The opinion of a larger value is colored in a darker green.
We implemented the visualization using the PyCX project [61].

III. RESULTS

A. Numerical results

We first numerically study the asymmetric-gossip model
on finite-dimensional integer lattices with periodic boundary
conditions, which we simply refer to as the lattice in the fol-
lowing text, random regular graphs (RRGs), and uncorrelated
scale-free networks (SFNs).

1. Lattices

Let us consider the asymmetric-gossip model on the d-
dimensional lattices with linear size L, combined with a
periodic boundary condition. The network contains N = Ld

nodes. We show a typical time course of the model on the
two-dimensional lattice with q = 1/2 in Fig. 1. We show
the relationship between the convergence time, T , and L for
q = 1/2 and d = 1, . . . , 6 in Fig. 2(a). The figure suggests
the relationship T ∝ Lz, where ∝ denotes “proportional to.”
Then, for each dimension d , we estimate the value of z by a
linear fit between ln T and ln L, as shown by the solid lines in
Fig. 2(a). See Appendix A for details of the fitting procedure.

We show the estimated values of z by the solid line in
Fig. 2(b). The figure suggests up to d = 6 that z slightly
decreases from 2 as d increases. The deviation of z from 2
for higher d might be due to finite-size effects; for example,
the largest linear size L in our numerical simulations is only
9 when d = 6. The z value being close to 2 can be related to
the dynamic exponent for the normal diffusion (Appendix B).
To later compare the present results with those for other
networks, we define another exponent z̄ by

T ∝ Nz̄. (4)
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FIG. 2. Simulation results of the asymmetric-gossip model on d-dimensional lattices with N = Ld nodes under periodic boundary
conditions. We set q = 1/2. Each point or curve in panels (a), (d), (e), and (f) is an average over 100 simulations. We show the scaling
behavior of T versus L for d = 1, . . . , 6 (a), the estimated values of z, z′, and α, together with z̄ = z/d , for d = 1, . . . , 6 (b), the scaling
behavior of tc versus L for d = 1, . . . , 6 (c), and data collapse of ρ(t ) using the estimated values of z′ and α for d = 1 (d), 2 (e), and 3 (f). In
panels (a), (b), and (c), the error bars, representing the standard deviation, are smaller than the symbols.

Because N = Ld , one obtains

z̄ = z

d
. (5)

Exponent z̄ decreases as d increases [see Fig. 2(b)].
To further characterize dynamics towards convergence, we

numerically examine ρ(t ) for the same variety of the values
of d and L. In all cases ρ(t ) algebraically decays as a function
of time before it starts to decay exponentially. Therefore, we
assume that

ρ(t ) ∝ t−αe−t/tc , tc ∝ Lz′
, (6)

where α is the decay exponent, and z′ is the dynamic exponent
relating the characteristic time tc and the linear size L. Similar
to the estimation of z, for each dimension d , we estimate the
value of z′ by a linear fit between ln tc and ln L applied to
the numerical results, as shown in Fig. 2(c). Then we estimate
the value of α from ρ(t ) obtained for the largest value of L that
we use. See Appendix A for details of the fitting procedure.

We show the estimated values of z′ and α for d = 1, . . . , 6
in Fig. 2(b). The figure suggests up to d = 6 that α increases
as d increases and that the behavior of z′ is quantitatively
similar to that of z. For each dimension, with the estimated
values of z′ and α, we find that the curves of ρ(t ) for different
values of L collapse onto a single curve when we plot ρ(t )tα

versus t/Lz′
, as shown in Figs. 2(d)–2(f).

We contrast these findings with the results for the voter
model with two discrete opinions [62]. For the voter model,
the density of edges connecting nodes with the opposite opin-
ions, denoted by ρa(t ), decays as ρa(t ) ∝ t−1/2 for d = 1,
decays as ρa(t ) ∝ (ln t )−1 for d = 2, and converges to a posi-
tive constant for d > 2. The consensus time, denoted by T , for
the voter model in finite networks scales as T ∝ N2 for d = 1,

T ∝ N ln N for d = 2, and T ∝ N for d > 2, implying that
z̄ = 2 for d = 1 and z̄ = 1 for d � 2. The mean-field theory
for the original and multistate voter models in finite networks
also yields z̄ = 1 [19,51]. The numerically estimated values of
z̄ for the asymmetric-gossip model and the result for the voter
model are consistent with each other for d � 2, but they are
different for d > 2. We also remark that the Ising model and
a variant of the voter model called the confident voter model
on two-dimensional lattices often show the metastable struc-
ture (e.g., stripes) that induces two different timescales for
relaxation; see Refs. [63,64] for the Ising model and Ref. [65]
for the confident voter model. The present asymmetric-gossip
model does not show such metastable states.

2. Regular random graphs

Next, we perform the numerical simulations of the
asymmetric-gossip model on the RRGs. The numerical results
in the case of q = 1/2 and the node’s degree k = 4, 8, and 16
are shown in Figs. 3(a), 3(b), and 3(c), respectively. We find
that ρ(t ) is independent of N for each k value. Therefore, T
is independent of N , i.e., z̄ = 0 [see Fig. 3(d)]. As is the case
for various complex networks, RRGs are considered to have
d → ∞. Therefore, the result that z̄ = 0 is consistent with
that for the lattices, for which z̄ decreases as the dimension
of the lattice, d , increases, roughly according to z̄ ≈ 2/d [see
Fig. 2(b)]. Our result that z̄ = 0 is again different from the
known result for the voter model on uncorrelated networks
including RRGs, i.e., z̄ = 1 [51].

3. Scale-free networks

In this section, we study the asymmetric-gossip model on
the uncorrelated SFNs. We assume that the node’s degree
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FIG. 3. Simulation results of the asymmetric-gossip model on
random regular graphs (RRGs) with N nodes and degree k for each
node. We set q = 1/2. Each point on the curve is an average over
100 simulations on a single realization of the RRG. We show ρ(t )
for various network sizes with k = 4 (a), 8 (b), and 16 (c). The con-
vergence time is plotted in panel (d), where the error bars represent
the standard deviation.

obeys a power-law distribution given by P(k) = Ck−γ for
k � kmin = 2 with the degree exponent γ and normalization
constant C. We generate the SFNs based on the uncorrelated
configuration model [66]. In other words, we begin with N
isolated nodes to each of which we assign degree ki (for
i = 1, . . . , N) that is drawn from the distribution P(k). Then,
conditioned that

∑N
i=1 ki is an even number, we select a pair

of nodes with probabilities proportional to their remaining
degrees, i.e., ki subtracted by the present degree, and connect
them by an edge if both of their current degrees are smaller
than the assigned degrees and there is no edge between them.
We repeat this wiring procedure until all nodes have the actual
degree ki. In practice, we terminate the wiring procedure when
nodes with positive remaining degrees are already connected
to each other or when there is only one node with the positive
remaining degree. The generated networks are connected.

The numerical results on SFNs are shown in Fig. 4 for q =
1/2 and for several values of γ and N . We find that both ρ(t )
and T are only slightly affected by N , which implies that z̄ ≈
0, for a range of γ .

For the voter model on SFNs, the consensus time scales as
T ∝ N for γ > 3, T ∝ N/ ln N for γ = 3, T ∝ N (2γ−4)/(γ−1)

for 2 < γ < 3, T ∝ (ln N )2 for γ = 2, and T ∝ O(1) for γ <

2 [45]. Therefore, z̄ is dependent on γ and positive for the
voter model if γ > 2. In contrast, we obtain z̄ ≈ 0 for any
γ � 2.5 in the asymmetric-gossip model.

4. Effect of the learning rate parameter q

We now study the effect of the learning rate parameter q,
introduced in Eq. (1). We show the convergence time, T , as
a function of q for the lattices, RRGs, and SFNs of different
sizes in Fig. 5. In all cases, we find the optimal value of q
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FIG. 4. Simulation results of the asymmetric-gossip model on
uncorrelated scale-free networks (SFNs) with degree distribution
P(k) ∝ k−γ . We set q = 1/2. Each point on the curve is an average
over 100 simulations. For each pair of the N and γ values, we
generate 50 SFNs to perform two simulations on each of them. We
show ρ(t ) for various network sizes with γ = 2.5 (a), 3.5 (b), and
4.5 (c). The convergence time is plotted in panel (d), where the error
bars represent the standard deviation.

between 0 and 1 in terms of the convergence speed, making T
the smallest. These results imply that the faster learning does
not always speed up the convergence.
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B. Mean-field analysis

To understand our numerical results, in this section we
analyze the mean-field case where every node equally inter-
acts with every other node. The state of the system at time
t is specified by the distribution of opinions, {xi(t )}, which
we denote by Pt (x). By using Eq. (1) and approximating the
original discrete time by continuous time, which corresponds
to the limit N → ∞, we obtain the following master equation
to describe the dynamics of Pt (x):

∂Pt (x)

∂t
=

∫ 1

0
dxi

∫ 1

0
dx jPt (xi )Pt (x j )

× [δ(x − (1 − q)xi − qx j ) − δ(x − xi )], (7)

where δ denotes Dirac delta. In Eq. (7), xi and x j are the opin-
ions of a uniformly randomly chosen node i, whose opinion
changes at time t , and another uniformly randomly chosen
node j, respectively. Equation (7) is similar to the equation
that has originally been proposed for representing inelastic
collisions of particles [67,68]. By taking the Laplace trans-
form of Eq. (7) with respect to x over the range [0,1], one
obtains

∂P̃t (s)

∂t
= −P̃t (s) + P̃t ((1 − q)s)P̃t (qs), (8)

where

P̃t (s) ≡
∫ 1

0
dxe−xsPt (x). (9)

We expand the exponential term in Eq. (9) to obtain

P̃t (s) =
∞∑

n=0

(−s)n

n!
cn(t ), (10)

where

cn(t ) ≡
∫ 1

0
dxxnPt (x) (11)

is the nth moment of x at time t . Note that c0(t ) = 1 for
any t . The initial uniform distribution of the opinions implies
P0(x) = 1 for x ∈ [0, 1], which translates into c1(0) = 1/2.
By plugging Eq. (10) into Eq. (8) and comparing the coef-
ficients of s and s2, we obtain

dc1(t )

dt
= 0, (12)

dc2(t )

dt
= −2q(1 − q)c2(t ) + q(1 − q)

2
. (13)

For the second equation, we have used the fact that c1(t ) =
c1(0) = 1/2.

Instead of using ρ(t ) given by Eq. (3), one can also
describe the ordering dynamics in terms of the temporal evo-
lution of the variance of opinions, i.e.,

v(t ) ≡ 〈x(t )2〉 − 〈x(t )〉2

= c2(t ) − c1(t )2

= c2(t ) − 1
4 . (14)

By substituting Eq. (14) into Eq. (13), we obtain

dv(t )

dt
= −2q(1 − q)v(t ). (15)

Therefore, for 0 < q < 1 we obtain

v(t ) = v(0)e−t/τc , (16)

where

τc ≡ 1

2q(1 − q)
. (17)

Therefore, the opinion distribution, Pt (x), converges to δ(x −
1/2), i.e., the consensus at x = 1/2, exponentially fast. Equa-
tion (17) implies that the convergence time, T , is also
proportional to [q(1 − q)]−1, which we numerically confirm
for complete graphs [see Fig. 6(a)]. Note that the convergence
time, T , for the complete graph is independent of the number
of nodes, N , for q = 0.1, . . . , 0.9, which we used in Fig. 6(a).

C. Crossover behavior

We have found for RRGs and SFNs that z̄ ≈ 0 for 0 < q <

1. However, we expect to find z̄ = 1, i.e., T ∝ N for q = 1
because when q = 1, the asymmetric-gossip model reduces
to the multistate voter model. Therefore, we expect to find
a crossover between the q < 1 regime and the q = 1 case in
terms of the dependence of T on N . To study this crossover
behavior, we carry out numerical simulations on the complete
graph with several values of q close to one.

We show the relationship between T and N in Fig. 6(b).
The figure suggests for each q that T ∝ N for N � N× and
that T is constant for N � N×, where N× denotes a crossover
system size. Therefore, we assume that

T = T∞ f

(
N

N×

)
, (18)

where

f (r) =
{

r if r � 1,

1 if r � 1.
(19)

Note that N× may depend on q. If N � N×, one obtains
T = T∞, which implies that T∞ is the convergence time for
large N . In Sec. III B we suggested T∞ ∝ [q(1 − q)]−1 based
on the mean-field theory. Therefore, we assume that T∞ =
a/[q(1 − q)] with a = 21.8 [see also Fig. 6(a)]. If N � N×,
then Eqs. (18) and (19) imply that T = (T∞/N×)N ≡ bN .
We estimate b = 3.55 by the linear fit between T and N
using numerical results obtained for N = 100, . . . , 1600 with
q = 0.999. Then we write N× as follows:

N× = T∞
b

= a

bq(1 − q)
. (20)

Consequently, as q approaches one, N× diverges. Using these
T∞ and N× values, which depend on q, we plot T/T∞ as a
function of N/N× for various values of q in Fig. 6(c). We
find that all curves roughly collapse onto a single curve that
satisfies Eq. (19).

We remark that the crossover behavior between dif-
ferent N-dependences of the consensus time T has been
reported for other opinion dynamics models with discrete
opinions: T ∝ N1.6 for N < N× and T ∝ N0.2 for N >

N× on the one-dimensional lattice, and T ∝ N0.6 for N <

N× and T ∝ N0.1 for N > N× on the two-dimensional
lattice [69,70].
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IV. CONCLUSION

We have studied an asymmetric-gossip model for
continuous-opinion dynamics without a bounded confidence.
We have specifically focused on the effects of the system size,
N , i.e., the number of individuals, on the convergence time,
T . We numerically find that the scaling exponent relating T
and N depends on the dimension of the lattices. In contrast,
T is approximately independent of N for the regular ran-
dom graphs, uncorrelated scale-free networks, and complete
graphs. We have presented a mean-field analysis to support
the numerical results for the complete graphs.

In Ref. [55] the authors analyzed the convergence time
of a model similar to the present asymmetric-gossip model.
Their model is a broadcast asymmetric-gossip model. In other
words, when a node i updates its state according to Eq. (1),
all the nodes adjacent to node j do so at the same time
such that j broadcasts its opinion to all its neighbors. They
considered spatial networks to find that there is a value of
q, where 0 < q < 1, which minimizes the convergence time.
This result is consistent with our numerical results for the
lattices, RRGs, and SFNs [see Fig. 5] and our theoretical result
that the convergence is the fastest at q = 1/2 on the complete
graph [see Eq. (17)]. Future questions in this direction include
how our scaling results extend to broadcast gossip models,
how the optimal q values depend on the network structure,
and how we can leverage linear algebra techniques [40,55] to
further understand the present asymmetric-gossip model.

As future work, it may also be interesting to study finite-
size effects on the convergence time in more complicated,
realistic models with continuous opinions, such as mul-

tidimensional Deffuant-Weisbuch and Hegselmann-Krause
models [4,71,72].
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APPENDIX A: ESTIMATION OF z, z′, AND α

VALUES FOR LATTICES

On the lattice of each dimension, d , and each linear size, L,
shown in Table I, we run 100 simulations with different initial
conditions to obtain the average convergence time T as well
as the average curve of ρ(t ). Then we estimate the value of
z by the linear fit between ln T and ln L, which is informed
by the assumption that T ∝ Lz. The estimated values of z and
their standard errors are shown in the third column of Table I.

From ρ(t ), we estimate tc by the linear fit between ln ρ(t )
and t for a range of t showing the exponentially decaying
behavior. We show the range of t used for the fitting in each
case in the fourth column of Table I. Once the values of tc for
all the values of L considered are ready, we estimate the value
of z′ by the linear fit between ln tc and ln L, which is informed

TABLE I. Details of the simulation on lattices and the estimation of z, z′, and α values. For each dimension d , we show the linear sizes L,
estimated value of z with standard error in parentheses, fitting ranges of t for tc, estimated value of z′ with standard error in parentheses, fitting
range of t for α, and estimated value of α with the standard error in parentheses.

d L z Fitting range of t for tc z′ Fitting range of t for α α

1 400,800,1600,3200,6400 1.88(1) � 2 × 104,� 8 × 104,� 2 × 105, [106, 3 × 107],� 5 × 106 2.00(1) [e2.5, e15] 0.76(1)
2 40,80,120,160,200 1.86(1) � 500,� 2000,� 5000, [104 : 14 × 104], [2 × 104 : 25 × 104] 2.00(1) [e2.5, e9] 1.04(1)
3 10,14,20,30,40 1.82(1) � 70,� 150,� 300,� 500,� 1000 1.97(1) [e2.5, e6] 1.40(1)
4 8,10,12,16,20 1.77(1) � 80,� 100,� 180,� 250,� 300 1.94(1) [e2.5, e5.5] 1.74(3)
5 7,8,9,10,11 1.69(1) � 60,� 70,� 90,� 100,� 150 1.89(1) [e2.5, e5] 2.21(3)
6 5,6,7,8,9 1.59(2) � 50,� 80,� 90,� 100,� 120 1.84(2) [e2.5, e5] 2.57(4)
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by the assumption that tc ∝ Lz′
. The estimated values of z′ and

their standard errors are shown in the fifth column of Table I.
As mentioned in the main text, for each d , we compute

the value of α from the ρ(t ) for the largest L. We estimate
the value of α by the linear fit between ln ρ(t ) and ln t for a
range of t showing the scaling behavior, which is listed in the
sixth column of Table I. The estimated values of α with their
standard errors are shown in the seventh column of Table I.

APPENDIX B: RELATION OF THE ASYMMETRIC-GOSSIP
MODEL TO THE DIFFUSION PROCESS

We can interpret the update rule in Eq. (1) as a normal
diffusion process. To show this, we expand the left-hand side
of Eq. (1) assuming N � 1 to obtain

dxi(t )

dt
= Nq[x j (t ) − xi(t )]. (B1)

On one-dimensional lattices, j is either i − 1 or i + 1 with
probability 1/2 each. Therefore, the expectation of xi(t ),
denoted by E [xi(t )], evolves according to

dE [xi(t )]

dt
= Nq

2
{E [xi−1(t )] + E [xi+1(t )] − 2E [xi(t )]}.

(B2)
One can approximate Eq. (B2) in the continuous space by the
normal diffusion equation as follows:

dE [x(y, t )]

dt
≈ D

d2E [x(y, t )]

dy2
, (B3)

with a diffusion constant D = Nq/2, where ≈ represents
“approximately equal to”. The dynamic exponent z relating
the timescale and the length scale of the normal diffusion
given by Eq. (B3) is 2. The same derivation applies to the
higher-dimensional lattices with a dimension-dependent dif-
fusion constant D = Nq/(2d ), where we remind that d is the
dimension.
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